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ABSTRACT 
Mining high utility itemsets from databases is an emerging topic 
in data mining, which refers to the discovery of itemsets with 
utilities higher than a user-specified minimum utility threshold 
min_util. Although several studies have been carried out on this 
topic, setting an appropriate minimum utility threshold is a 
difficult problem for users. If min_util is set too low, too many 
high utility itemsets will be generated, which may cause the 
mining algorithms to become inefficient or even run out of 
memory. On the other hand, if min_util is set too high, no high 
utility itemset will be found. Setting appropriate minimum utility 
thresholds by trial and error is a tedious process for users. In this 
paper, we address this problem by proposing a new framework 
named top-k high utility itemset mining, where k is the desired 
number of high utility itemsets to be mined. An efficient 
algorithm named TKU (Top-K Utility itemsets mining) is proposed 
for mining such itemsets without setting min_util. Several features 
were designed in TKU to solve the new challenges raised in this 
problem, like the absence of anti-monotone property and the 
requirement of lossless results. Moreover, TKU incorporates 
several novel strategies for pruning the search space to achieve 
high efficiency. Results on real and synthetic datasets show that 
TKU has excellent performance and scalability.  

Categories and Subject Descriptors 
H.2.8 [Database Management]: Database Applications — Data 
Mining 

General Terms: Algorithms, Performance 

Keywords: Utility mining, high utility itemset, top-k pattern 
mining 
1. INTRODUCTION 
Frequent itemset mining (abbreviated as FIM) [1, 8] is a 
fundamental research topic in data mining. However, the 
traditional model of FIM may discover a large amount of frequent 
but low revenue itemsets and lose the information on valuable 
itemsets having low selling frequencies. Hence, FIM cannot 
satisfy the requirement of users who desire to discover itemsets 
with high utilities such as high profits. To address these issues, 
utility mining [2, 3, 6, 11, 12, 13, 18, 19, 20, 21, 23, 24, 25] 
emerges as an important topic in data mining. In utility mining, 
each item has a weight (e.g. unit profit) and can appear more than 
once in each transaction (e.g. purchase quantity). The utility of an 
itemset represents its importance, which can be measured in terms 

of weight, profit, cost, quantity or other information depending on 
the user preference. An itemset is called a high utility itemset 
(abbreviated as HUI) if its utility is no less than a user-specified 
minimum utility threshold. Utility mining is an important task and 
has a wide range of applications such as website click stream 
analysis [2, 11, 18, 20, 24], cross-marketing in retail stores [6, 12, 
13, 19, 21, 23, 25] and biomedical applications [3]. 
Although this framework is essential to many applications, 
mining high utility itemsets is not an easy task because the 
downward closure property [1] does not hold. To facilitate the 
task of high utility itemset mining, most approaches [2, 11, 12, 21] 
utilize the TWU  model and TWDC  property to prune the search 
space. In this model, an itemset is called HTWUI if its TWU is no 
less than min_util, where the TWU of an itemset represents the 
upper bound of its utility. The TWDC property states that for any 
itemset that is not an HTWUI, all its supersets are low utility 
itemsets. The TWU-model consists of two phases named phase I 
and phase II. In phase I, all the HTWUIs are found. In phase II, 
the exact utilities of HTWUIs are calculated by scanning the 
database.   
Although many studies have devoted to HUI mining, it is difficult 
for users to choose an appropriate minimum utility threshold in 
practice. Depending on the threshold, the output size can be very 
small or very large. Besides, the choice of the threshold also 
greatly influences the performance of the algorithms. If the 
threshold is set too low, too many high utility itemsets will be 
presented to the users. It is difficult for the users to comprehend 
the results. A large number of high utility itemsets also causes the 
mining algorithms to become inefficient or even run out of 
memory, because the more high utility itemsets the algorithms 
generate, the more resources they consume. On the contrary, if 
the threshold is set too high, no high utility itemset will be found. 
In this case, users need to try different thresholds by guessing and 
re-executing the algorithms over and over until being satisfied 
with the results. This process is both inconvenient and time-
consuming. 
We illustrate the problem of setting the minimum utility threshold 
with a real shopping transaction database named Chainstore. 
Figure 1 shows the runtime and the number of high utility 
itemsets in Chainstore dataset of the state-of-the-art utility mining 
algorithm UP-Growth [19]. As it can be seen, the choice of 
min_util has a major impact on the output size even if it is just 
changed slightly. For example, consider the case of a user who is 
interested in finding the top 1000 itemsets that contribute the 
highest profits in the Chainstore dataset. If the user does not 
possess the background knowledge about the database for setting 
min_util (he needs to make a guess to choose the threshold), he 
has only a very small chance of selecting a min_util that will 
satisfy his requirements (he would need to set min_util 
between 0.02% and 0.03%).  Moreover, if the threshold is set 
below 0.02%, the algorithm can take up to one hour before 
terminating on a typical desktop computer. 
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     (a) Runtime                    (b) Number of high utility itemsets  

Figure 1. Runtime and number of high utility itemsets in 
Chainstore dataset under varied minimum utility thresholds 

A similar problem occurring in FIM is how to determine an 
appropriate minimum support threshold to mine enough but not 
too many itemsets for the users. To precisely control the output 
size and discover the most frequent patterns without setting the 
threshold, a good solution is to change the task of mining frequent 
patterns to the task of mining the top-k frequent patterns [4, 5, 7, 9, 
10, 14, 16, 17, 22]. The idea is to let the users specify k, i.e., the 
number of desired patterns, instead of specifying the minimum 
support threshold. Setting k is more intuitive than setting the 
threshold because k represents the number of itemsets that the 
user wants to find whereas choosing the threshold depends solely 
on database’s characteristics, which are often unknown to users.  

Although using a parameter k instead of a threshold would also be 
desirable in utility mining, developing an efficient algorithm for 
mining top-k high utility itemsets is not an easy task. It poses four 
major challenges as discussed below.  

First, the utility of an itemset is neither monotone nor anti-
monotone. In other words, the utility of an itemset may be equal 
to, higher or lower than that of its supersets and subsets. 
Therefore, many techniques [5, 7, 9, 10, 14, 16, 17, 22] developed 
in top-k frequent pattern mining that rely on anti-monotonicity to 
prune the search space cannot be directly applied to top-k high 
utility itemset mining. 

The second challenge is how to incorporate the concept of top-k 
pattern mining with the TWU-model. Although the TWU-model 
is widely used in utility mining, it is difficult to adapt this model 
to top-k high utility itemset mining because the exact utilities of 
itemsets are unknown in phase I. When an HTWUI is generated in 
phase I, we cannot guarantee that its utility is higher than other 
HTWUIs and it is a top-k high utility itemset before performing 
phase II. To guarantee that all the top-k high utility itemsets can 
be captured in the set of HTWUIs, a naive approach is to run the 
algorithm with min_util = 0. However, this approach may 
encounter the large search space problem. 
The third challenge is that min_util is not given in advance in top-
k high utility itemset mining. In the traditional high utility itemset 
mining, the search space can be efficiently pruned by the 
algorithms with a given min_util. However, in the scenario of top-
k high utility mining, the threshold is not provided. Therefore, the 
minimum utility threshold is initially set to 0. The mining task has 
to gradually raise the threshold to prune the search space. Thus 
the challenge is to design an algorithm that can raise the threshold 
as high as possible and make the number of candidates produced 
in phase I as small as possible. 
The last challenge is how to effectively raise the threshold 
without missing any top-k high utility itemsets. A good algorithm 
is one that can effectively raise the threshold during the mining 
process. However, if an incorrect method for raising the threshold 
is used, it may result in some top-k high utility itemsets being 

pruned. Thus, how to effectively raise the threshold without 
missing any top-k high utility itemsets is a crucial challenge for 
this work. 

In this paper, we address all of the above challenges by proposing 
an efficient algorithm named TKU for Top-K Utility itemset 
mining. This work has three major contributions. 

First, we propose a novel framework for mining top-k high utility 
itemsets. An algorithm named TKU is proposed for efficiently 
mining the complete set of top-k high utility itemsets in the 
database without specifying min_util threshold. 

Second, five new strategies are proposed for effectively raising 
the threshold at different stage of the mining process. The first 
four strategies effectively raise the threshold during the mining 
process to prune the search space and reduce the number of 
candidates in phase I. The last strategy effectively reduces the 
number of candidates that need to be checked in phase II. It 
improves the runtime of phase II and the overall performance. 

Third, we conducted different kinds of experiments with real 
datasets. The results show that the performance of the proposed 
algorithm TKU is close to that of the optimal case of the state-of-
the-art utility mining algorithm UP-Growth [19]. Moreover, it is 
over 100 times faster than the compared baseline algorithm. 

The remainder of this paper is organized as follows. In Section 2, 
we introduce the background for utility mining and top-k pattern 
mining. Section 3 presents the proposed methods. Experiments 
are shown in Section 4 and conclusions are given in Section 5. 

Table 1. An example database 
TID Transaction TU 
T1 (A,1) (C,1) (D,1) 8 
T2 (A,2) (C,6) (E,2) (G,5) 27 
T3 (A,1) (B,2) (C,1) (D,6) (E,1) (F,5) 30 
T4 (B,4) (C,3) (D,3) (E,1) 20 
T5 (B,2) (C,2) (E,1) (G,2) 11 

Table 2. Profit table 
Item A B C D E F G 

Profit 5 2 1 2 3 1 1 

2. BACKGROUND 
This section introduces the preliminaries related to utility mining, 
and then defines the problem statement of top-k high utility 
itemset mining. We adopt the notations used in [19]. For more 
details about high utility itemsets, readers can refer to [19]. 

2.1 Problem definition 
Given a finite set of distinct items I = {i1, i2, …, im}. Each item 
ij∈ I is associated with a positive number p(ij, D), called its 
external utility. A transactional database D = {T1, T2, …, Tn} is a 
set of transactions, where each transaction Tc∈D, (1 ≤ c ≤ n) is a 
subset of I and has an unique identifier c, called Tid. In 
transaction Tc, each item ij is associated with a positive number 
q(ij, Tc), called its internal utility in Tc. An itemset X = {i1, i2, …, 
il} is a set of l distinct items, where ij∈ I, 1 ≤ j ≤ l, and l is the 
length of X. A l-itemset is an itemset of length l. An itemset X is 
said to be contained in a transaction Tc if X⊆ Tc.  

Definition 1. The support count of an itemset X is the number of 
transactions containing X in D and denoted as SC(X). The support 
of X is defined as the ratio of SC(X) to |D|.  
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Definition 2. The utility of an item ip in a transaction Tc is 
denoted as u(ij, Tc) and defined as p(ij, D) × q(ij, Tc).  

Definition 3. The utility of an itemset X in a transaction Tc is 
denoted and defined as u(X, Tc) = ∑ ∈Xji cj Tiu ),( . 

Definition 4. The utility of an itemset X in D is denoted and 
defined as u(X) = ∑ ∈∧⊆ DcTcTX cTXu ),( . 
Definition 5. An itemset X is called high utility itemset if u(X) is 
no less than a user-specified minimum utility threshold min_util.  

Definition 6. Let min_util be the minimum utility threshold, the 
complete set of high utility itemsets in D is denoted as fH(D, 
min_util). The goal of high utility itemset mining is to discover 
fH(D, min_util).  

Example 1. Let Table 1 be an example database containing five 
transactions. Each row in Table 1 represents a transaction, in 
which each letter represents an item and has a purchase quantity 
(internal utility). The unit profit of each item is shown in Table 2 
(external utility). Suppose min_util is set to 30, the set of high 
utility itemsets in Table 1 is {{BD}:30, {ACE}:31, {BCD}:34, 
{BCE}:31, {BDE}:36, {BCDE}:40, {ABCDEF}:30}, where the 
number beside each itemset is its utility. 

Note that the utility constraint is neither monotone nor anti-
monotone. In other words, the utility of an itemset may be equal 
to, higher or lower than that of its supersets and subsets. 
Therefore, we cannot directly use the anti-monotone property 
(also known as downward closure property) to prune the search 
space. To facilitate the mining task, Liu et al. introduced the 
concept of transaction-weighted downward closure [12], which is 
based on the following definitions. 
Definition 7. The transaction utility of a transaction TR is denoted 
as TU(TR) and defined as u(TR, TR).  

Definition 8. The transaction-weighted utilization of an itemset X 
is the sum of the transaction utilities of all the transactions 
containing X, which is denoted as TWU(X) and defined as TWU(X) 
= ∑  ∈  ∧  ⊆ RRR

)(DTTX TTU . 
Definition 9. An itemset X is a high transaction-weighted 
utilization itemset (abbreviated as HTWUI) if TWU(X) ≥  min_util. 

Property 1. (TWDC property) The transaction-weighted 
downward closure property states that for any itemset X that is not 
a HTWUI, all its supersets are low utility itemsets [12]. 

Definition 10. (Top-k high utility itemset) An itemset X is called 
a top-k high utility itemset in a database D if there are less than k 
itemsets whose utilities are larger than u(X) in fH(D, 0). 

Property 2. Let H be the complete set of top-k high utility 
itemsets in D. H may contain less than k high utility itemsets 
when |fH(D, 0)| ≤ k. Besides, H may contain more than k high 
utility itemsets when some itemsets have the same utility. 

Definition 11. (Optimal minimum utility threshold) Let H be 
the complete set of top-k high utility itemsets in D. A minimum 
utility threshold δ* is called optimal minimum utility threshold if 
there does not exist another threshold δ such that δ ≥  δ* and |fH(D, 
δ)| ≥  k. If |H| ≥  k, δ* = min{u(X)| X∈H}.  

Problem Statement. Given a transaction database D and the 
desired number of high utility itemsets k, the problem of finding 
the complete set of top-k high utility itemsets in D is to discover k 
itemsets with the highest utilities in D. An equivalent problem 

statement is to discover all the itemsets whose utilities are no less 
than δ* in D. 

Example 2. Suppose the desired number of high utility itemset k 
is set to 3, the top-3 high utility itemsets in Table 1 is H = 
{{BCDE}:40, {BDE}:36, {BCD}:34}. The optimal minimum 
utility threshold δ* to retrieve H is equal to min{40, 36, 34} = 34.  

2.2 Related work 
2.2.1 High Utility Itemset Mining 
Many studies have been proposed for mining HUIs, including 
Two-Phase [12], IHUP [2], IIDS [13] and UP-Growth [19]. Two-
Phase and IHUP utilize transaction-weighted downward closure 
property to find high utility itemsets. They consist of two phases. 
In phase I, they find all HTWUIs from the database. In phase II, 
high utility itemsets are identified from the set of HTWUIs by 
scanning the original database. Although these methods capture 
the complete set of HUIs, they may generate too many candidates 
in phase I, i.e. HTWUIs, which degrades the performance of 
phase II and the overall performance (in terms of time and space). 
To reduce the number of candidates in phase I, various methods 
have been proposed (e.g. [13, 19]). Recently, Tseng et al. 
proposed UP-Growth [19] with four effective strategies DGU, 
DGN, DLU and DLN, for mining HUIs. Experiments showed that 
the number of candidates generated by UP-Growth in phase I can 
be order of magnitudes smaller than that of HTWUIs. To the best 
of our knowledge, UP-Growth is the state-of-the-art method for 
mining high utility itemsets. Although many studies addressed the 
topic of mining high utility itemset from transaction databases, 
few of them showed the flexibility of mining top-k high utility 
itemsets. Although the concept of top-k high utility itemset 
mining was first introduced in [3], the definition of high utility 
itemset in [3] is different from [2, 13, 15, 20] and our work.  

2.2.2 Top-k Frequent Itemset Mining 
In frequent pattern mining, several top-k pattern mining 
algorithms have been proposed [4, 5, 7, 9, 10, 14, 16, 17, 22]. 
Most of them (e.g. [5, 9, 10, 22]) follow a same general process 
for finding top-k patterns, although they also have several 
differences. We describe this general process below and then 
highlight the challenges for top-k high utility itemset mining.  

The general process for mining top-k patterns from a database is 
the following. Initially, a top-k pattern mining algorithm sets 
minimum support threshold minsup to 0 to ensure that all the top-
k patterns will be found. Then, the algorithm starts searching for 
patterns by using a search strategy. As soon as a pattern is found, 
it is added to a list of patterns L ordered by the support of 
patterns. The list L is used to maintain the top-k patterns found 
until now. Once k patterns are found, the value of minsup is raised 
to the support of the least interesting pattern in L. Raising minsup 
is used to prune the search space when searching for more 
patterns. Thereafter, each time a pattern is found that meets the 
minimum support threshold, the pattern is inserted into L, the 
patterns in L not respecting the threshold anymore are removed 
from L, and the threshold is raised to the support of the least 
frequent patterns in L. The algorithm continues searching for 
more patterns until no pattern is found by the search strategy.  

What distinguish each top-k pattern mining algorithm are the data 
structures and search strategies to discover patterns. Top-k pattern 
mining algorithm needs to use appropriate data structure and 
search strategies to be efficient in both memory and execution 
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time. Besides, the efficiency of a top-k algorithm depends largely 
on how fast it can raise the minimum interestingness criterion 
(minsup) to prune the search space. To raise the threshold quickly, 
it is desirable that a top-k pattern mining algorithm uses a search 
strategy that will find the most interesting patterns as early as 
possible. Although several efficient top-k pattern mining 
algorithms [5, 9, 10, 22] have been designed based on this idea, it 
is not possible to simply adapt this idea to HUI mining.  The 
reason is that the HUI mining is performed in two phases and that 
the exact utility of itemsets is only known during phase II. 
Therefore, mining the top-k HTWUIs during phase I would not 
necessarily result in finding the top-k HUIs in phase II. Another 
challenge is how to integrate effective strategies for raising min-
_util given that the exact utility is only known in phase II.  

By the above literature reviews, although there are many studies 
about utility mining and top-k pattern mining, fewer of them focus 
on the integration of mining top-k high utility itemsets. This paper 
addresses this topic to find top-k high utility itemsets.  

Table 3. Items and their TWUs 
Item A B C D E F G 
TWU 65 61 96 58 88 30 38 

Table 4. Reorganized transactions and their RTUs 
TID Reorganized transaction RTU 
T1’ (C,1) (A,1) (D,1) 8 
T2’ (C,6) (E,2) (A,2)  27 
T3’ (C,1) (E,1) (A,1) (B,2) (D,6)  30 
T4’ (C,3) (E,1) (B,4) (D,3)  20 
T5’ (C,2) (E,1) (B,2)  11 
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Figure 2. An UP-Tree when min_util = 0. 

3. MINING TOP-K HIGH UTILITY 
ITEMSETS 
In this section, we propose an efficient algorithm named TKU 
(mining Top-K Utility itemsets) for discovering top-k high utility 
itemsets without specifying min_util. We first present a baseline 
named TKUBase approach and then introduce effective strategies to 
enhance its performance.   

3.1 The baseline approach 
The baseline approach TKUBase takes k as parameter and outputs 
the k itemsets with the highest utilities. It is an extension of UP-
Growth, the current best method for mining high utility itemsets, 
and it adopts the idea of UP-Tree [19] to maintain the information 
of transactions and top-k high utility itemsets. The framework of 
TKUBase consists of three parts: (1) construction of UP-Tree, (2) 
generation of potential top-k high utility itemsets (abbreviated as 
PKHUIs) from the UP-Tree, and (3) identifying top-k high utility 
itemsets from the set of PKHUIs. 

3.1.1 UP-Tree Structure 
In this subsection, we briefly introduce the structure of UP-Tree. 
For the details about the UP-Tree, readers can refer to [19]. 

In UP-Tree, each node N consists of the following elements: 
N.name is the item name of N; N.count is the support count of N; 
N.nu is the node utility of N; N.parent records the parent node of 
N; N.hlink is a node link which points to a node whose item name 
is the same as N.name. Header table is employed to facilitate the 
traversal of UP-Tree. In the header table, each entry is composed 
of an item name, an estimate utility value, and a link. The link 
points to the last occurrence of the node having the same item 
name as the entry in the UP-Tree. The nodes whose item names 
are the same can be traversed efficiently by following the links in 
header table and the nodes in UP-Tree. 

3.1.2 Construction of UP-Tree 
A UP-Tree can be constructed with only two scans of the original 
database. In the first scan, the transaction utility of each 
transaction and TWU of each single item are computed. Thus, 
items and their TWUs are obtained. Subsequently, items are 
inserted into the header table in descending order of their TWUs. 
During the second database scan, transactions are reorganized and 
then inserted into the UP-Tree. Initially, the tree is created with a 
root R. When a transaction is retrieved, items in the transaction 
are sorted in descending order of TWU. A transaction after the 
above reorganization is called reorganized transaction and its 
transaction utility is called RTU (reorganized transaction utility). 
The RTU of a reorganized transaction Td’ is denoted as RTU(Td’). 
When a reorganized transaction Td’ = {i1, i2, …, im} (ij∈I, 1 ≤ j ≤ 
m) is retrieved, TKUBase applies the strategy DGN (Discarding 
Global Node utilities) [19] and calls the function 
Insert_Reorganized_Transaction(R, i1) to insert td’.  

The function Insert_Reorganized_Transaction(N, ix) takes a node 
N in the UP-Tree and an item ix (ix∈  Td’, 1 ≤ x ≤ m) in the 
reorganized transaction Td’ as inputs. The function is performed 
as follows:  

Line 1: If N has a child S such that S.item = ix, then increment 
S.count by 1; otherwise, create a new child node S with 
S.item = ix, S.count = 1, S.parent = N and S.nu = 0. 

Line 2: Increase S.nu by (RTU(Td’) – )∑ )',()1+(=
m

xp dp Tiu , where 
ip∈Td’ and 1≤ p ≤ m. 

Line 3: Call Insert_Reorganized_Transaction(S, ix+1) if p≠ m. 

After inserting all reorganized transactions, the construction of the 
UP-Tree is completed. Figure 2 shows an UP-Tree for Table 1 
when min_util = 0.  

3.1.3 Generating PKHUIs from the UP-Tree  
The proposed algorithm uses an internal variable named border 
minimum utility threshold (denoted as border_min_util) which is 
initially set to 0 and raised dynamically after a sufficient number 
of itemsets with higher utilities has been captured during the 
generation of PKHUIs. The development of the proposed method 
is based on the following definitions and lemmas.  

Lemma 1. Let P=<X1, X2,…, Xm> be a set of itemsets (m ≥ k), 
where Xi is the i-th itemset in P and u(Xi) ≥ u(Xj),∀ i < j. (In other 
words, Xi is the itemset with the i-th highest utility in P). For any 
itemset Y, if u(Y) < u(Xk), Y is not a top-k high utility itemset.  
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Rationale. According to Definition 10, if there exist k itemsets 
whose utilities are higher than the utility of Y, Y is not a top-k 
high utility itemset.  

Lemma 2. Let P=<X1, X2,…, Xm> be a set of itemsets (m ≥ k), 
where Xi is the i-th itemset in P and u(Xi) ≥ u(Xj),∀ i < j. If δP = 
u(Xk),  fH(D, δ*)⊆  fH(D, δP).  
Rationale. Let H be the complete set of top-k high utility itemsets. 
If |H| ≥ k, δ* = min{u(X)| X∈H} (by Definition 11). Because δ* = 
min{u(X)| X∈H} ≥  min{u(Xi)| Xi ∈ P, 1 ≤ i ≤ k} = u(Xk) = δP,  
δ* ≥ δP and fH(D, δ*)⊆  fH(D, δP).  

Example 3. Suppose k = 4 and border_min_util  = 0 initially. Let 
P be the set of 1-items in D. Then P = {{A}:20, {D}:20, {B}:16, 
{E}:15, {C}:13, {G}:7, {F}:5}, where the number beside each 
item is its exact utility. By Lemma 1, items {C}, {G}, {F} are 
unpromising to be the top-4 high utility itemsets. Therefore 
border_min_util can be raised to 15, the 4th highest utility value 
in P, and no top-k high utility itemset will be missed.  
After raising border_min_util, the algorithm performs the UP-
Growth search procedure with min_util = border_min_util to 
generate PKHUIs. Although Lemma 1 provides a way to raise 
border_min_util, it cannot be applied during the generation of 
PKHUIs in phase I. This is because the exact utilities of the 
PKHUIs are unknown during phase I. One of the solutions to this 
problem is to use lower bound of the utility of PKHUI to raise the 
border_min_util. A lower bound of the utility of an itemset can be 
estimated by the following definitions.  
Definition 12. The minimum item utility of an item a is denoted as 
miu(a) and defined as the value u(a, Tr) for which ∃¬  Ts ∈  D 
such that u(a, Ts) < u(a, Tr). 
Definition 13. The minimum item utility of an itemset X={a1, 
a2,…, am} is defined as MIU(X) = ∑ )(1= i

m
i amiu × SC(X). 

Lemma 3. Let C = <X1, X2,…, Xm> be a set of itemsets (m ≥ k), 
where Xi is the i-th itemset in C and MIU(Xi) ≥  MIU(Xj),∀ i < j. 
For any itemset Y, if TWU(Y) < δC = min{MIU(Xi) | Xi ∈  C, 1 ≤ i 
≤ k}, Y is not a top-k high utility itemset.  
Rationale. According to Definition 8, u(Y)≤ TWU(Y). If TWU(Y) 
< δC, u(Y) < δC. Besides, u(Y) < MIU(Xi) ≤ u(Xi), Xi ∈  C, 1 ≤ i ≤ k. 
According to Definition 10, if there exist k itemsets whose 
utilities are higher than the utility of Y, Y is not a top-k high utility 
itemset.  

Lemma 4. Let C =<X1, X2,…, Xm> be a set of itemsets (m ≥ k), 
where Xi is the i-th itemset in C and MIU(Xi) ≥  MIU(Xj),∀ i < j. 
If δC = MIU(Xk), fH(D, δ*)⊆  fH(D, δC).  
Rationale. Let H be the complete set of top-k high utility itemsets. 
If |H| ≥ k, δ* = min{u(X)| X∈H} (by Definition 10). Because δ* = 
min{u(X)| X∈H} ≥  min{u(Xi)| Xi ∈  C, 1 ≤ i ≤ k} ≥  min{MIU(Xi) 
| Xi ∈  C, 1 ≤ i ≤ k}= MIU(Xk), we have δ* ≥ δC and fH(D, δ*)⊆  
fH(D, δC).  

Lemma 5. For any itemset X, if TWU(X) < border_min_util ≤ δ*, 
X and all its supersets are not top-k high utility itemsets.  

Definition 14. The maximum item utility of an item a is denoted 
as mau(a) and defined as the value u(a, Tr) for which ∃¬  Ts ∈  D 
such that u(a, Ts) > u(a, Tr). 

Table 5. Items and their mius and maus 
Item A B C D E F G 
miu 5 4 1 2 3 5 2 
mau 5 8 3 6 6 5 5 

Definition 15. The maximum utility of an itemset X={a1, a2,…, am} 
is defined as MAU(X) =∑ )(1= i

m
i amau × SC(X). 

Lemma 6. For any itemset X, if MAU(X) < border_min_util < δ*, 
X is not a top-k high utility itemset. 
Rationale. According to Definition 15, we have u(X) ≤ MAU(X). 
If MAU(X) < border_min_util, u(X) < border_min_util. According 
to Definition 10, X is not a top-k high utility itemset. 

Lemma 7. For any itemset X, the relationships between MAU(X) 
TWU(X), u(X) and MIU(X) is MIU(X) ≤ u(X) ≤ min{MAU(X), 
TWU(X)}.  

Definition 16. An itemset is called a PKHUI (Potential top-K 
High Utility Itemset) if its estimated utility (i.e., TWU) and MAU 
are no less than the border_min_util.  

Based on the above lemmas and definitions, we have the 
following ideas to raise border_min_util during the generation of 
PKHUIs. As soon as a candidate X is found by the UP-Growth 
search procedure, we check whether its estimated utility (i.e, 
TWU(X)) is higher than border_min_util. If TWU(X) < 
border_min_util, X and all its supersets are not top-k high utility 
itemsets (Lemma 5). Otherwise, we check whether its MAU is 
higher than border_min_util. If MAU(X) < border_min_util, X is 
not a top-k high utility itemset (Lemma 6). Otherwise, X is 
considered as a candidate for phase II and it is outputted with its 
estimated utility value according to Lemma 7. If X is a valid 
PKHUI and MIU(X) ≥  border_min_util, MIU(X) can be used to 
raise the border_min_util (Lemma 3). To efficiently update 
border_min_util, we use a min-heap structure L to maintain the k 
highest MIUs of the PKHUIs until now.  Once k MIUs are found, 
border_min_util is raised to the k-th MIU in L according to 
Lemma 3. Each time a PKHUI X is found and its MIU is higher 
than border_min_util, X is added into L and the lowest MIU in L 
is removed. After that, border_min_util is raised to the k-th MIU 
in L. The algorithm continues searching for more PKHUIs until 
no candidate is found by the UP-Growth search procedure. Figure 
3 gives the pseudo code for the above processes. 

If(TWU(X) ≥ border_min_util and MAU(X) ≥ border_min_util) 
    {    Output X and min{TWU(X), MAU(X)} 

If (MIU(X) ≥  border_min_util) 
          { Add X to L and raise border_min_util by MIU(X)}  

} 
    else 
          {    X is not a valid PKHUI     } 

Figure 3. The pseudo code for the strategy MC  

Strategy 1. Raising the threshold by MUI of Candidate (MC) 
For any newly mined PKHUI X, if its MIU, TWU and MAU are no 
less than the current border_min_util, then it is safe to use MIU(X) 
to raise border_min_util. 

3.1.4 Identifying top-k HUIs from PKHUIs 
In this part, we propose a basic method for identifying top-k high 
utility itemsets from the set of PKHUIs. Exact utilities of PKHUIs 
are identified and top-k high utility itemsets are examined by 
scanning the original database. Main method of this part is similar 
to that of phase II in [12, 19]. However, in previous work [12, 19], 
all candidates should be checked. Therefore, we only check the 
candidate itemset X whose estimated utility is larger than or equal 
to the border_min_util finally reached after phase I, i.e., 
min(TWU(X), MAU(X)) ≥  border_min_util.   
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3.2 Effective strategies 
In this subsection, we introduce four effective strategies to 
effectively raise border_min_util during different stage of the 
mining process.  

3.2.1 Pre-evaluation Step  
Although TKUBase provides a way to mine top-k HUIs, 
border_min_util is set to 0 before the construction of the UP-Tree. 
This results in the construction of a full UP-Tree in memory, 
which degrades the performance of the mining task. If we could 
raise border_min_util before the construction of the UP-Tree and 
prune unpromising items in the transactions, the number of nodes 
maintained in memory could be reduced and the mining algorithm 
could achieve better performance. To solve this problem, we 
propose a strategy named PE (Pre-Evaluation) to raise 
border_min_util during the first scan of the database. A structure 
named pre-evaluation matrix (PEM) is used to store lower bounds 
for the utility of certain 2-itemsets. Each entry in PEM is denoted 
as PEM[x][y] and corresponds to a lower bound of u(xy), where x, 
y∈ I. Initially, each value in the matrix is set to 0. When a 
transaction Td ={i1, i2, …, im} (ij∈I, 1 ≤ j ≤ m) is retrieved during 
the first scan of the database, the utility of the itemset {i1 ij} (1 < j 
≤ m) in Td is added to the value of the corresponding  entry of 
PEM[i1][ij]. For example, when T1 = {(A,1), (C,1), (D,1)} is 
retrieved, the corresponding entries PEM[A][C], PEM[A][D] are 
accumulated with u({AC}, T1) = 6 and u({AD}, T1) = 7. After 
scanning the database, border_min_util is set to the k-th highest 
value in PEM. Figure 4 shows the value of each entry in PEM 
after scanning Table 1. When k = 4, the 4th highest value in PEM 
is 18. Therefore, border_min_util can be raised to 18. 
Strategy 2. Pre-Evaluation (PE) PE is applied during the first 
scan of the database. When a transaction Td ={i1, i2, …, im} (ij∈ I, 
1 < j ≤ m) is retrieved, the utility of u(i1 ij, Td) is added to the 
corresponding entry PEM[i1][ij] in the pre-evaluation matrix, 1 < j 
≤ m. Then, border_min_util can be raised to the k-th highest 
values in PEM. The space complexity is O(|I|/2), where |I| is the 
number of distinct items in the database. 

Notice that in TKUBase, the strategy DGU in [19] cannot be 
applied, because border_min_util is 0 before the construction of 
UP-Tree. However, if we raise border_min_util at pre-evaluation 
step, the strategy DGU can be applied to prune those items whose 
TWUs are less than border_min_util, which further reduces the 
size of UP-Tree and the number of candidates produced in phase I. 

3.2.2 Raising the threshold by node utilities 
The next proposed strategy is called NU (Raising the threshold by 
Node Utilities), which is applied during the construction of UP-
Tree. The strategy NU is developed based on the following 
lemmas.  

Lemma 8. Let PA = {N1, N2,…, Nm, R} be a path from a node N1 
to the root R in the UP-Tree and ij be an item in Nj, 1≤ j ≤ m. The 
node utility of N1 is a lower bound for the utility of the itemset {i1, 
i2…,  im}, 1≤ j ≤ m. 
Rationale. The UP-Tree is constructed by applying the strategy 
DGN [19]. According to the rationale described in [19], the utility 
of the itemset {i1, i2…,  im} is guaranteed to be higher than the 
node utility of N1.Therefore, N1.nu ≤ u({i1, i2…,  im}). 

Lemma 9. Let S = <N1, N2,…, Nm> be an ordered set of nodes in 
UP-Tree (m ≥ k), where Ni is the i-th node in S and Ni.nu ≥  
Nj.nu,∀ i < j. If δNU = Nk.nu, then fH(D, δ*)⊆  fH(D, δNU).  

 B C D E F G 
A 9 28 24 24 10 15 
B  17 14 18 0 6 
C   0 0 0 0 
D    0 0 0 
E     0 0 
F      0 

Figure 4. Pre-evaluation matrix 
Rationale. Each node Nj to the root R represents an unique 
itemset Xj, 1 ≤ j ≤ m (Lemma 8). Let S’ =<X1, X2,…, Xm> be an 
ordered set of itemsets, where Nj.nu ≤ u(Xj) and 1 ≤ j ≤ m. If 
|H| ≥ k, then δ* = min{u(X)| X∈ H} (Definition 10). Because 
min{u(X)| X∈H} ≥  min{u(Xj)| Xj ∈ S, 1 ≤ j ≤ k} ≥min{Nj.nu | Nj 

∈ S’, 1 ≤ j ≤ k}, we have  δ* ≥ δNU and fH(D, δ*)⊆  fH(D, δNU).  

By Lemma 8 and 9, if there are more than k nodes in the UP-Tree 
during its construction and this value is higher than the current 
border_min_util, we can raise border_min_util to the k-th highest 
node utility in the UP-Tree. For example, suppose k = 4, when the 
first reorganized transaction T1’ = {(C,1), (A,1), (D,1)} is inserted 
into the UP-Tee,  the nodes {C}, {A} and {D} are created with 
node utilities 1, 6 and 8, which represent lower bounds for the 
utilities of itemsets {C}, {AC} and {DAC}. When the second 
reorganized transaction is inserted into the tree, there are more 
than four nodes in the UP-Tree. Therefore, we can apply Lemma 
9 to raise border_min_util to the 4-th highest node utility in the 
UP-Tree.  

Strategy 3. Raising the threshold by Node Utilities (NU) NU is 
applied during the construction of the UP-Tree (the second scan 
of the database). If there are more than k nodes in the current UP-
Tree and k-th highest node utility is no less than the current 
border_min_util, border_min_util can be raised to the k-th highest 
node utility in the current UP-Tree. 

3.2.3 Raising the threshold by MIU of 
Descendents  
The third strategy that we propose is called MD (Raising the 
threshold by MIU of Descendents). It is applied after the 
construction of the UP-Tree and before the generation of PKHUIs. 
For each node Nα under the root in the UP-Tree, we traverse the 
sub-tree under Nα once to calculate the MIU of NαNβ for each 
descendent node Nβ of Nα. If there are more than k such values, 
border_min_util can be raised to the k-th highest value. For 
example, consider the UP-Tree in Figure 2 and suppose k = 4. The 
node under the root is {C}. We traverse the sub-tree under the 
node {C} once and calculate the MIUs of its descendents. For the 
descendent {A}, the total support count of {A} in the sub-tree of 
{C} is (1 + 2) = 3. Therefore, the MIU of {AC} is (miu({A}) + 
miu({C})) ×SC({AC}) =  (5 + 4) × 3 = 27.   

Strategy 4. Raising the threshold by MIU of Descendents (MD) 
MD is applied after the construction of UP-Tree and before the 
generation of PKHUIs. For each node Nα under the root in the 
UP-Tree, the support count of NαNβ is calculated by traversing 
every its descendent node Nβ. For each pair NαNβ, we calculate the 
MIU of NαNβ. If there are more than k MIUs larger than 
border_min_util, the border_min_util can be raised to k-th highest 
value. 

Table 6. MIUs of descendents 
Descendent E A B D G F 

MIU 16 18 15 9 3 1 
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3.2.4 Raising the threshold during Phase II 
In this part, top-k high utility itemsets are identified by checking 
the real utilities of PKHUIs in the database. The purpose of this 
part is the same as the basic method (in Section 3.1.4). Although 
the basic method can skip checking some candidates, the number 
of checked PKHUIs is still too large. Scanning database for 
checking the large amount of PKHUIs is very time-consuming. 

In view of this, we propose an additional strategy for cooperating 
with the candidate skipping mechanism in Section 3.1.4. There 
are two main steps in this strategy. First, the candidates are sorted 
by the descendent order of estimated utilities, i.e., min(TWU(X), 
MAU(X)). Thus, the candidates with larger estimated utility 
values will be first checked; in other words, those having lower 
values will be checked later.  

After k PKHUIs whose exact utilities are larger than 
border_min_util are found, a mechanism for raising 
border_min_util is applied. If the exact utility of a new HUI Y is 
larger than border_min_util, Y and u(Y) is inserted into a top-k 
HUI list E (All HUIs in E are ordered by their exact utilities), and 
the HUI with the lowest utility value is removed from E. Then 
border_min_util is raised to the utility of k-th HUI in E. If the 
estimated utility of the current candidate Z, i.e., min(TWU(Z), 
MAU(Z)), is less than the new border minimum utility threshold, 
all of the remaining candidates do not need to be checked. This is 
because that their upper bounds of exact utilities are not larger 
than border_min_util. Finally, E is the set of top-k high utility 
itemsets of the database. By this mechanism, the candidates with 
lower estimated utility values may not be checked since the 
border_min_util is raised. The I/O cost and execution time for 
phase II can be further reduced. This technique works well 
especially when k is small. 

Strategy 5. Sorting candidates & raising threshold by the 
exact utility of candidates. (SE) SE is applied during phase II of 
TKU. Let CI be the set of candidates produced in phase I. 
Candidates in CI are sorted in the descendent order of their 
estimated utilities. Next, if there are more than k HUIs whose 
exact utilities are larger than border_min_util, border_min_util 
can be raised to the k-th highest exact utility. For any candidate Z, 
if min(TWU(Z), MAU(Z)) is less than border_min_util, Z and the 
remaining candidates do not need to be checked anymore. 

4. EXPERIMENTAL EVALUATION 
In this section, we evaluate the performance of the proposed 
algorithm. Experiments were performed on computer with a 3.40 
GHz Intel Core Processor with 4 gigabyte memory, and running 
on Windows 7. All of the algorithms are implemented in Java. 
Different types of real world datasets were used in the 
experiments. Foodmart, a sparse dataset, was acquired from 
Microsoft foodmart 2000 database [27]; Mushroom, a dense 
dataset, was obtained from the FIMI Repository [26]; Chainstore, 
a large dataset, was obtained from NU-MineBench 2.0 [15]. The 
two datasets Foodmart and Chainstore already contain unit profits 
and purchased quantities. For Mushroom dataset, unit profits for 
items are generated between 1 and 1000 by using a log-normal 
distribution and quantities of items are generated randomly 
between 1 and 5, as the settings of [19]. Table 7 shows the 
characteristics of the datasets used in the experiments. To 
evaluate the performance of the proposed strategies, we prepared 
three versions of TKU and gave them the names TKU, TKUnoSE 
and TKUBase as shown in Table 8. These three versions are 

compared with the state-of-the-art utility mining algorithm UP-
Growth [19].  

Table 7. Datasets’ characteristics 
Dataset #Transactions Avg. length #Items Type 

Foodmart 4,141 4.4 1,559 Sparse 
Mushroom 8,124 23.0 119 Dense 

Chainstore 1,112,949 7.2 46,086 Sparse 
Large 

 
Table 8. Strategies used by the algorithms 

Algorithm Phase I Phase II 
PE NU MD MC SE 

TKU Y Y Y Y Y 
TKUnoSE Y Y Y Y  
TKUBase    Y Y 

Because UP-Growth is not developed for mining top-k HUIs, it 
cannot be compared directly with TKU. To compare their 
performance, we considered the scenario where the users choose 
the optimal parameters for UP-Growth to produce the same 
amount of patterns as TKU (denoted as UPOptimal in the following 
experiments).  

We first show the performance of the algorithms on the Foodmart 
dataset. The results are shown in Figure 5 and Table 9. In Figure 5 
(a), it can be observed that the runtime for phase I of TKU 
approaches that of UPOptimal. On the contrary, the performance of 
TKUBase is the worst among all the algorithms. Its runtime is 
about 100 times slower than that of TKU. The reason is shown in 
Figure 5 (b). This figure shows the thresholds that the TKU and 
TKUBase reached after phase I. Since UP-Growth does not raise 
the thresholds during the mining process, we show its initial 
thresholds (the optimal thresholds). In this figure, it can be 
observed that the thresholds reached by TKU are closer to the 
optimal thresholds than those of TKUBase. On the other hand, 
TKUBase does not apply the strategies PE, NU and MD. Therefore, 
it constructs a full UP-Tree with min_util = 0. Since raising the 
threshold for TKUBase strictly depends on the MC strategy, it 
cannot be raised effectively. Thus its search space is the largest 
and its runtime is the longest.   

The ineffectiveness of raising the threshold for TKUBase also 
influences the number of candidates generated in phase I. The 
number of candidates generates by each algorithm is shown in 
Table 9. In this table, it can be observed that the number of 
candidates for TKUBase is over 1000 times larger than TKU when 
k is less than 1000. The reason is that the strategies PE, NU and 
MD effectively raise the threshold at different stages of the 
mining process. Thus the number of patterns generated by TKU is 
much smaller than that of TKUBase.  

The runtime of each algorithm for phase II is shown in Figure 5 
(c). Because each candidate needs to be checked in phase II and 
TKUBase has the largest number of candidates, its performance for 
phase II is the worst. The performance of TKUnoSE is worse than 
TKU because the latter uses the strategy SE, which reduces the 
number of candidates need to be checked in phase II. Overall 
runtime of the algorithms is shown in Figure 5 (d). We can see 
that the runtime of TKU is over 100 times faster than TKUBase, 
and only about twice less than that of UPOptimal. Therefore, it can 
be concluded that TKU is an efficient algorithm since it can 
exactly find the top-k HUIs within a reasonable time.  
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Figure 5. Performance of the algorithms on Foodmart 

Table 9. Number of candidates after Phase I 
K TKU TKUBase Reduction ratio 

1 1,379 2,466,459 1788.59 
10 1,503 2,494,446 1659.65 

100 2,456 2,537,225 1033.07 
1,000 39,289 2,585,300 65.80 
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Figure 6. Performance of the algorithms on Mushroom 

Table 10. Number of candidates after Phase I 
K TKU TKUBase Reduction ratio 
1 427 508,462 1190.78 

10 597,301 713,793 1.20 
100 803,377 920,040 1.14 

1,000 1,540,583 1,657,403 1.08 
5,000 2,594,337 2,711,248 1.05 

 

Next, we show the performance on the Mushroom dataset. The 
results are shown in Figure 6 and Table 10. Figure 6 (a) shows the 
runtime for phase I of the algorithms. It can be observed that the 
runtime for phase I of TKU is close to that of TKUBase. This is 
because Mushroom is a dense dataset. The estimated utility values, 
i.e., TWU values, of itemsets are much larger than their exact 
utilities. Thus the thresholds cannot be raised effectively in phase 
I. The thresholds reached by the algorithms are shown in Figure 6 
(b). It can be seen that if k is larger than 1, the threshold reached 
by TKU is close to TKUBase.  

Table 10 shows the number of candidates generated by the 
algorithms during phase I. In this table, it can be seen that when k 
is larger than 1, the reduction ratio is slightly larger than 1. The 
reduction ratio decreases when k increases. Figure 6 (c) shows the 
runtime for phase II of the algorithms. The runtime for phase II of 
TKUnoSE is the worst among the algorithms. This is because, 
without the SE strategy, TKUnoSE needs to check all the 
candidates to determine which itemsets are top-k HUIs. When k is 
set to 5,000, the runtime of TKUnoSE is too long to be executed 
(over 10,000 seconds). Finally, Figure 6 (d) shows the total 
runtime of the algorithms. We can conclude that although TKU is 
not as efficient as for the Foodmart dataset, it is still more 
efficient than TKUBase. 
Finally, we show the performance of the algorithms on Chainstore, 
a large dataset with over 1 million transactions. Because the 
runtime of TKUBase for this dataset is too long to be executed 
(over 20 hours when k = 1), we instead use UP-Growth with a low 
minimum utility threshold (0.01%) as the baseline (denoted as 
UPLow in the following experiments). The number of HUIs 
generated with min_util = 0.01% is about 3800. The results are 
shown in Figure 7 and Table 11. Figure 7 (a) shows the runtime 
for phase I of the algorithms. Since the threshold of UPLow is fixed, 
its runtime remains the same. It can be seen that the runtime of 
TKU is worse than UPLow when k is larger than 200. The reasons 
are that TKU needs to perform more computation for the 
strategies and it raises the threshold by the strategies step by step.  

Figure 7 (b) shows the runtime for phase II of the algorithms. 
Although the runtime for phase I of TKU is slightly worse than 
UPLow, the runtime for phase II of TKU is much faster than that of 
UPLow. The total runtimes (the sum of the runtimes of phase I and 
phase II) are shown in Figure 7 (c). TKU is much faster than 
UPLow. Generally, overall runtime of TKU is close to UPOptimal. 
This is because UPLow needs to check all candidates in phase II; 
on the other hand, TKU only needs to check some of them 
because it uses the SE strategy.  
Figure 7 (d) shows the number of candidates checked in phase II 
by each algorithm. It can be observed that although TKU 
generates much more candidates in phase I, the number of 
candidates that need to be checked by TKU is close to UPoptimal in 
phase II. This is because using the SE strategy, TKU avoids 
checking some candidates that do not need to be checked. In 
contrary, since all candidates are checked by TKUnoSE, its 
performance is worse than TKU and UPOptimal. 

Finally, we show the threshold changes after applying the 
strategies in phase I. The results are shown in Table 11. In this 
table, it can be observed that the thresholds are raised higher 
when the strategies are applied. On the other hand, it can also be 
seen that the thresholds decrease when k increases. This is 
reasonable because the larger k is, the lower the thresholds are. 
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Overall, Table 11 shows the effectiveness of all proposed 
strategies in phase I.  
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Figure 7. Performance of the algorithms on Chainstore 

Table 11. Reached thresholds after each step in Phase I 
K PE NU MD MC 

100 2254.35 7509.38 7509.38 7509.38 
200 1578.67 3929.84 3929.84 5324.16 
300 1307.68 2728.92 2804.48 4346.16 
400 1116.25 2158.83 2382.52 3803.76 
500 988.49 1739.42 2050.96 3438.30 
600 899.52 1457.85 1820.28 3145.21 
700 826.38 1270.27 1650.04 2899.80 
800 758.63 1117.47 1515.24 2734.67 
900 712.97 1015.57 1412.70 2588.88 

1,000 677.37 915.22 1334.82 2469.60 

In general, the experimental results show that TKU outperforms 
TKUBase and UPLow. Moreover, the performance of TKU is close to 
UPOptimal. The reasons are listed as follows. First, strategies PE, NU, 
MD and MC in phase I effectively raise the threshold step by step in 
phase I. Thus the number of candidates that need to be checked in 
phase II is less and the search space in phase I is successfully 
reduced. Second, the SE strategy in phase II effectively reduces the 
number of candidates that need to be checked in phase II. Therefore, 
TKU is shown to be efficient with a performance that is close to that 
of the optimal case of the state-of-the-art utility mining algorithm 
UP-Growth.  

5. CONCLUSION 
In this paper, we have proposed an efficient algorithm named TKU 
for mining top-k high utility itemsets from transaction databases. 
TKU guarantees there is no pattern missing during the mining 
process. We develop four strategies for phase I to raise the border 
minimum utility threshold and reduce the search space and number 
of generated candidates. Moreover, a strategy is designed for phase 
II to decrease the number of checked candidates. The mining 
performance is enhanced significantly since both the search space 
and the number of candidates are effectively reduced by the 
proposed strategies. In the experiments, different types of real 
datasets are used to evaluate the performance of our algorithm. The 
experimental results show that TKU outperforms the baseline 

algorithms substantially and the performance of TKU is close to the 
optimal case of the state-of-the-art utility mining algorithm. 
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