
Mining Top-K High Utility Itemsets
Cheng Wei Wu1, Bai-En Shie1, Philip S. Yu2, Vincent S. Tseng1

1Department of Computer Science and Information Engineering, National Cheng Kung University, Taiwan, ROC
2Department of Computer Science, University of Illinois at Chicago, Chicago, Illinois, USA

{silvemoonfox, brianshie}@gmail.com, psyu@cs.uic.edu, tsengsm@mail.ncku.edu.tw

ABSTRACT
Mining high utility itemsets from databases is an emerging topic
in data mining, which refers to the discovery of itemsets with
utilities higher than a user-specified minimum utility threshold
min_util. Although several studies have been carried out on this
topic, setting an appropriate minimum utility threshold is a
difficult problem for users. If min_util is set too low, too many
high utility itemsets will be generated, which may cause the
mining algorithms to become inefficient or even run out of
memory. On the other hand, if min_util is set too high, no high
utility itemset will be found. Setting appropriate minimum utility
thresholds by trial and error is a tedious process for users. In this
paper, we address this problem by proposing a new framework
named top-k high utility itemset mining, where k is the desired
number of high utility itemsets to be mined. An efficient
algorithm named TKU (Top-K Utility itemsets mining) is proposed
for mining such itemsets without setting min_util. Several features
were designed in TKU to solve the new challenges raised in this
problem, like the absence of anti-monotone property and the
requirement of lossless results. Moreover, TKU incorporates
several novel strategies for pruning the search space to achieve
high efficiency. Results on real and synthetic datasets show that
TKU has excellent performance and scalability.

Categories and Subject Descriptors
H.2.8 [Database Management]: Database Applications — Data
Mining

General Terms: Algorithms, Performance

Keywords: Utility mining, high utility itemset, top-k pattern
mining
1. INTRODUCTION
Frequent itemset mining (abbreviated as FIM) [1, 8] is a
fundamental research topic in data mining. However, the
traditional model of FIM may discover a large amount of frequent
but low revenue itemsets and lose the information on valuable
itemsets having low selling frequencies. Hence, FIM cannot
satisfy the requirement of users who desire to discover itemsets
with high utilities such as high profits. To address these issues,
utility mining [2, 3, 6, 11, 12, 13, 18, 19, 20, 21, 23, 24, 25]
emerges as an important topic in data mining. In utility mining,
each item has a weight (e.g. unit profit) and can appear more than
once in each transaction (e.g. purchase quantity). The utility of an
itemset represents its importance, which can be measured in terms

of weight, profit, cost, quantity or other information depending on
the user preference. An itemset is called a high utility itemset
(abbreviated as HUI) if its utility is no less than a user-specified
minimum utility threshold. Utility mining is an important task and
has a wide range of applications such as website click stream
analysis [2, 11, 18, 20, 24], cross-marketing in retail stores [6, 12,
13, 19, 21, 23, 25] and biomedical applications [3].
Although this framework is essential to many applications,
mining high utility itemsets is not an easy task because the
downward closure property [1] does not hold. To facilitate the
task of high utility itemset mining, most approaches [2, 11, 12, 21]
utilize the TWU model and TWDC property to prune the search
space. In this model, an itemset is called HTWUI if its TWU is no
less than min_util, where the TWU of an itemset represents the
upper bound of its utility. The TWDC property states that for any
itemset that is not an HTWUI, all its supersets are low utility
itemsets. The TWU-model consists of two phases named phase I
and phase II. In phase I, all the HTWUIs are found. In phase II,
the exact utilities of HTWUIs are calculated by scanning the
database.
Although many studies have devoted to HUI mining, it is difficult
for users to choose an appropriate minimum utility threshold in
practice. Depending on the threshold, the output size can be very
small or very large. Besides, the choice of the threshold also
greatly influences the performance of the algorithms. If the
threshold is set too low, too many high utility itemsets will be
presented to the users. It is difficult for the users to comprehend
the results. A large number of high utility itemsets also causes the
mining algorithms to become inefficient or even run out of
memory, because the more high utility itemsets the algorithms
generate, the more resources they consume. On the contrary, if
the threshold is set too high, no high utility itemset will be found.
In this case, users need to try different thresholds by guessing and
re-executing the algorithms over and over until being satisfied
with the results. This process is both inconvenient and time-
consuming.
We illustrate the problem of setting the minimum utility threshold
with a real shopping transaction database named Chainstore.
Figure 1 shows the runtime and the number of high utility
itemsets in Chainstore dataset of the state-of-the-art utility mining
algorithm UP-Growth [19]. As it can be seen, the choice of
min_util has a major impact on the output size even if it is just
changed slightly. For example, consider the case of a user who is
interested in finding the top 1000 itemsets that contribute the
highest profits in the Chainstore dataset. If the user does not
possess the background knowledge about the database for setting
min_util (he needs to make a guess to choose the threshold), he
has only a very small chance of selecting a min_util that will
satisfy his requirements (he would need to set min_util
between 0.02% and 0.03%). Moreover, if the threshold is set
below 0.02%, the algorithm can take up to one hour before
terminating on a typical desktop computer.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
KDD’12, August 12–16, 2012, Beijing, China.
Copyright 2012 ACM 978-1-4503-1462-6/12/08...$15.00

78

Runtime

0

1000

2000

3000

4000

5000

6000

0.10.080.060.040.02
MinUtil (%)

Ti
m

e
(S

ec
.)

Number of HUIs

0

1000

2000

3000

4000

5000

0.10.080.060.040.02
MinUtil (%)

#C
an

di
da

te
s

 (a) Runtime (b) Number of high utility itemsets

Figure 1. Runtime and number of high utility itemsets in
Chainstore dataset under varied minimum utility thresholds

A similar problem occurring in FIM is how to determine an
appropriate minimum support threshold to mine enough but not
too many itemsets for the users. To precisely control the output
size and discover the most frequent patterns without setting the
threshold, a good solution is to change the task of mining frequent
patterns to the task of mining the top-k frequent patterns [4, 5, 7, 9,
10, 14, 16, 17, 22]. The idea is to let the users specify k, i.e., the
number of desired patterns, instead of specifying the minimum
support threshold. Setting k is more intuitive than setting the
threshold because k represents the number of itemsets that the
user wants to find whereas choosing the threshold depends solely
on database’s characteristics, which are often unknown to users.

Although using a parameter k instead of a threshold would also be
desirable in utility mining, developing an efficient algorithm for
mining top-k high utility itemsets is not an easy task. It poses four
major challenges as discussed below.

First, the utility of an itemset is neither monotone nor anti-
monotone. In other words, the utility of an itemset may be equal
to, higher or lower than that of its supersets and subsets.
Therefore, many techniques [5, 7, 9, 10, 14, 16, 17, 22] developed
in top-k frequent pattern mining that rely on anti-monotonicity to
prune the search space cannot be directly applied to top-k high
utility itemset mining.

The second challenge is how to incorporate the concept of top-k
pattern mining with the TWU-model. Although the TWU-model
is widely used in utility mining, it is difficult to adapt this model
to top-k high utility itemset mining because the exact utilities of
itemsets are unknown in phase I. When an HTWUI is generated in
phase I, we cannot guarantee that its utility is higher than other
HTWUIs and it is a top-k high utility itemset before performing
phase II. To guarantee that all the top-k high utility itemsets can
be captured in the set of HTWUIs, a naive approach is to run the
algorithm with min_util = 0. However, this approach may
encounter the large search space problem.
The third challenge is that min_util is not given in advance in top-
k high utility itemset mining. In the traditional high utility itemset
mining, the search space can be efficiently pruned by the
algorithms with a given min_util. However, in the scenario of top-
k high utility mining, the threshold is not provided. Therefore, the
minimum utility threshold is initially set to 0. The mining task has
to gradually raise the threshold to prune the search space. Thus
the challenge is to design an algorithm that can raise the threshold
as high as possible and make the number of candidates produced
in phase I as small as possible.
The last challenge is how to effectively raise the threshold
without missing any top-k high utility itemsets. A good algorithm
is one that can effectively raise the threshold during the mining
process. However, if an incorrect method for raising the threshold
is used, it may result in some top-k high utility itemsets being

pruned. Thus, how to effectively raise the threshold without
missing any top-k high utility itemsets is a crucial challenge for
this work.

In this paper, we address all of the above challenges by proposing
an efficient algorithm named TKU for Top-K Utility itemset
mining. This work has three major contributions.

First, we propose a novel framework for mining top-k high utility
itemsets. An algorithm named TKU is proposed for efficiently
mining the complete set of top-k high utility itemsets in the
database without specifying min_util threshold.

Second, five new strategies are proposed for effectively raising
the threshold at different stage of the mining process. The first
four strategies effectively raise the threshold during the mining
process to prune the search space and reduce the number of
candidates in phase I. The last strategy effectively reduces the
number of candidates that need to be checked in phase II. It
improves the runtime of phase II and the overall performance.

Third, we conducted different kinds of experiments with real
datasets. The results show that the performance of the proposed
algorithm TKU is close to that of the optimal case of the state-of-
the-art utility mining algorithm UP-Growth [19]. Moreover, it is
over 100 times faster than the compared baseline algorithm.

The remainder of this paper is organized as follows. In Section 2,
we introduce the background for utility mining and top-k pattern
mining. Section 3 presents the proposed methods. Experiments
are shown in Section 4 and conclusions are given in Section 5.

Table 1. An example database
TID Transaction TU
T1 (A,1) (C,1) (D,1) 8
T2 (A,2) (C,6) (E,2) (G,5) 27
T3 (A,1) (B,2) (C,1) (D,6) (E,1) (F,5) 30
T4 (B,4) (C,3) (D,3) (E,1) 20
T5 (B,2) (C,2) (E,1) (G,2) 11

Table 2. Profit table
Item A B C D E F G

Profit 5 2 1 2 3 1 1

2. BACKGROUND
This section introduces the preliminaries related to utility mining,
and then defines the problem statement of top-k high utility
itemset mining. We adopt the notations used in [19]. For more
details about high utility itemsets, readers can refer to [19].

2.1 Problem definition
Given a finite set of distinct items I = {i1, i2, …, im}. Each item
ij∈ I is associated with a positive number p(ij, D), called its
external utility. A transactional database D = {T1, T2, …, Tn} is a
set of transactions, where each transaction Tc∈D, (1 ≤ c ≤ n) is a
subset of I and has an unique identifier c, called Tid. In
transaction Tc, each item ij is associated with a positive number
q(ij, Tc), called its internal utility in Tc. An itemset X = {i1, i2, …,
il} is a set of l distinct items, where ij∈ I, 1 ≤ j ≤ l, and l is the
length of X. A l-itemset is an itemset of length l. An itemset X is
said to be contained in a transaction Tc if X⊆ Tc.

Definition 1. The support count of an itemset X is the number of
transactions containing X in D and denoted as SC(X). The support
of X is defined as the ratio of SC(X) to |D|.

79

Definition 2. The utility of an item ip in a transaction Tc is
denoted as u(ij, Tc) and defined as p(ij, D) × q(ij, Tc).

Definition 3. The utility of an itemset X in a transaction Tc is
denoted and defined as u(X, Tc) = ∑ ∈Xji cj Tiu),(.

Definition 4. The utility of an itemset X in D is denoted and
defined as u(X) = ∑ ∈∧⊆ DcTcTX cTXu),(.
Definition 5. An itemset X is called high utility itemset if u(X) is
no less than a user-specified minimum utility threshold min_util.

Definition 6. Let min_util be the minimum utility threshold, the
complete set of high utility itemsets in D is denoted as fH(D,
min_util). The goal of high utility itemset mining is to discover
fH(D, min_util).

Example 1. Let Table 1 be an example database containing five
transactions. Each row in Table 1 represents a transaction, in
which each letter represents an item and has a purchase quantity
(internal utility). The unit profit of each item is shown in Table 2
(external utility). Suppose min_util is set to 30, the set of high
utility itemsets in Table 1 is {{BD}:30, {ACE}:31, {BCD}:34,
{BCE}:31, {BDE}:36, {BCDE}:40, {ABCDEF}:30}, where the
number beside each itemset is its utility.

Note that the utility constraint is neither monotone nor anti-
monotone. In other words, the utility of an itemset may be equal
to, higher or lower than that of its supersets and subsets.
Therefore, we cannot directly use the anti-monotone property
(also known as downward closure property) to prune the search
space. To facilitate the mining task, Liu et al. introduced the
concept of transaction-weighted downward closure [12], which is
based on the following definitions.
Definition 7. The transaction utility of a transaction TR is denoted
as TU(TR) and defined as u(TR, TR).

Definition 8. The transaction-weighted utilization of an itemset X
is the sum of the transaction utilities of all the transactions
containing X, which is denoted as TWU(X) and defined as TWU(X)
= ∑ ∈ ∧ ⊆ RRR

)(DTTX TTU .
Definition 9. An itemset X is a high transaction-weighted
utilization itemset (abbreviated as HTWUI) if TWU(X) ≥ min_util.

Property 1. (TWDC property) The transaction-weighted
downward closure property states that for any itemset X that is not
a HTWUI, all its supersets are low utility itemsets [12].

Definition 10. (Top-k high utility itemset) An itemset X is called
a top-k high utility itemset in a database D if there are less than k
itemsets whose utilities are larger than u(X) in fH(D, 0).

Property 2. Let H be the complete set of top-k high utility
itemsets in D. H may contain less than k high utility itemsets
when |fH(D, 0)| ≤ k. Besides, H may contain more than k high
utility itemsets when some itemsets have the same utility.

Definition 11. (Optimal minimum utility threshold) Let H be
the complete set of top-k high utility itemsets in D. A minimum
utility threshold δ* is called optimal minimum utility threshold if
there does not exist another threshold δ such that δ ≥ δ* and |fH(D,
δ)| ≥ k. If |H| ≥ k, δ* = min{u(X)| X∈H}.

Problem Statement. Given a transaction database D and the
desired number of high utility itemsets k, the problem of finding
the complete set of top-k high utility itemsets in D is to discover k
itemsets with the highest utilities in D. An equivalent problem

statement is to discover all the itemsets whose utilities are no less
than δ* in D.

Example 2. Suppose the desired number of high utility itemset k
is set to 3, the top-3 high utility itemsets in Table 1 is H =
{{BCDE}:40, {BDE}:36, {BCD}:34}. The optimal minimum
utility threshold δ* to retrieve H is equal to min{40, 36, 34} = 34.

2.2 Related work
2.2.1 High Utility Itemset Mining
Many studies have been proposed for mining HUIs, including
Two-Phase [12], IHUP [2], IIDS [13] and UP-Growth [19]. Two-
Phase and IHUP utilize transaction-weighted downward closure
property to find high utility itemsets. They consist of two phases.
In phase I, they find all HTWUIs from the database. In phase II,
high utility itemsets are identified from the set of HTWUIs by
scanning the original database. Although these methods capture
the complete set of HUIs, they may generate too many candidates
in phase I, i.e. HTWUIs, which degrades the performance of
phase II and the overall performance (in terms of time and space).
To reduce the number of candidates in phase I, various methods
have been proposed (e.g. [13, 19]). Recently, Tseng et al.
proposed UP-Growth [19] with four effective strategies DGU,
DGN, DLU and DLN, for mining HUIs. Experiments showed that
the number of candidates generated by UP-Growth in phase I can
be order of magnitudes smaller than that of HTWUIs. To the best
of our knowledge, UP-Growth is the state-of-the-art method for
mining high utility itemsets. Although many studies addressed the
topic of mining high utility itemset from transaction databases,
few of them showed the flexibility of mining top-k high utility
itemsets. Although the concept of top-k high utility itemset
mining was first introduced in [3], the definition of high utility
itemset in [3] is different from [2, 13, 15, 20] and our work.

2.2.2 Top-k Frequent Itemset Mining
In frequent pattern mining, several top-k pattern mining
algorithms have been proposed [4, 5, 7, 9, 10, 14, 16, 17, 22].
Most of them (e.g. [5, 9, 10, 22]) follow a same general process
for finding top-k patterns, although they also have several
differences. We describe this general process below and then
highlight the challenges for top-k high utility itemset mining.

The general process for mining top-k patterns from a database is
the following. Initially, a top-k pattern mining algorithm sets
minimum support threshold minsup to 0 to ensure that all the top-
k patterns will be found. Then, the algorithm starts searching for
patterns by using a search strategy. As soon as a pattern is found,
it is added to a list of patterns L ordered by the support of
patterns. The list L is used to maintain the top-k patterns found
until now. Once k patterns are found, the value of minsup is raised
to the support of the least interesting pattern in L. Raising minsup
is used to prune the search space when searching for more
patterns. Thereafter, each time a pattern is found that meets the
minimum support threshold, the pattern is inserted into L, the
patterns in L not respecting the threshold anymore are removed
from L, and the threshold is raised to the support of the least
frequent patterns in L. The algorithm continues searching for
more patterns until no pattern is found by the search strategy.

What distinguish each top-k pattern mining algorithm are the data
structures and search strategies to discover patterns. Top-k pattern
mining algorithm needs to use appropriate data structure and
search strategies to be efficient in both memory and execution

80

time. Besides, the efficiency of a top-k algorithm depends largely
on how fast it can raise the minimum interestingness criterion
(minsup) to prune the search space. To raise the threshold quickly,
it is desirable that a top-k pattern mining algorithm uses a search
strategy that will find the most interesting patterns as early as
possible. Although several efficient top-k pattern mining
algorithms [5, 9, 10, 22] have been designed based on this idea, it
is not possible to simply adapt this idea to HUI mining. The
reason is that the HUI mining is performed in two phases and that
the exact utility of itemsets is only known during phase II.
Therefore, mining the top-k HTWUIs during phase I would not
necessarily result in finding the top-k HUIs in phase II. Another
challenge is how to integrate effective strategies for raising min-
_util given that the exact utility is only known in phase II.

By the above literature reviews, although there are many studies
about utility mining and top-k pattern mining, fewer of them focus
on the integration of mining top-k high utility itemsets. This paper
addresses this topic to find top-k high utility itemsets.

Table 3. Items and their TWUs
Item A B C D E F G
TWU 65 61 96 58 88 30 38

Table 4. Reorganized transactions and their RTUs
TID Reorganized transaction RTU
T1’ (C,1) (A,1) (D,1) 8
T2’ (C,6) (E,2) (A,2) 27
T3’ (C,1) (E,1) (A,1) (B,2) (D,6) 30
T4’ (C,3) (E,1) (B,4) (D,3) 20
T5’ (C,2) (E,1) (B,2) 11

{R}

{C}: 5, 13

{E}: 4, 27

{A}: 2, 31

{B}: 1, 13

{D}: 1, 25

{B}: 2, 23

{D}: 1, 20

{A}: 1, 6

{D}: 1, 8

30F

38G

61B

65A

58D

88E

96C

LinkTWUItem

30F

38G

61B

65A

58D

88E

96C

LinkTWUItem

{G}: 1, 27

{F}: 1, 30

{G}: 1, 11

Figure 2. An UP-Tree when min_util = 0.

3. MINING TOP-K HIGH UTILITY
ITEMSETS
In this section, we propose an efficient algorithm named TKU
(mining Top-K Utility itemsets) for discovering top-k high utility
itemsets without specifying min_util. We first present a baseline
named TKUBase approach and then introduce effective strategies to
enhance its performance.

3.1 The baseline approach
The baseline approach TKUBase takes k as parameter and outputs
the k itemsets with the highest utilities. It is an extension of UP-
Growth, the current best method for mining high utility itemsets,
and it adopts the idea of UP-Tree [19] to maintain the information
of transactions and top-k high utility itemsets. The framework of
TKUBase consists of three parts: (1) construction of UP-Tree, (2)
generation of potential top-k high utility itemsets (abbreviated as
PKHUIs) from the UP-Tree, and (3) identifying top-k high utility
itemsets from the set of PKHUIs.

3.1.1 UP-Tree Structure
In this subsection, we briefly introduce the structure of UP-Tree.
For the details about the UP-Tree, readers can refer to [19].

In UP-Tree, each node N consists of the following elements:
N.name is the item name of N; N.count is the support count of N;
N.nu is the node utility of N; N.parent records the parent node of
N; N.hlink is a node link which points to a node whose item name
is the same as N.name. Header table is employed to facilitate the
traversal of UP-Tree. In the header table, each entry is composed
of an item name, an estimate utility value, and a link. The link
points to the last occurrence of the node having the same item
name as the entry in the UP-Tree. The nodes whose item names
are the same can be traversed efficiently by following the links in
header table and the nodes in UP-Tree.

3.1.2 Construction of UP-Tree
A UP-Tree can be constructed with only two scans of the original
database. In the first scan, the transaction utility of each
transaction and TWU of each single item are computed. Thus,
items and their TWUs are obtained. Subsequently, items are
inserted into the header table in descending order of their TWUs.
During the second database scan, transactions are reorganized and
then inserted into the UP-Tree. Initially, the tree is created with a
root R. When a transaction is retrieved, items in the transaction
are sorted in descending order of TWU. A transaction after the
above reorganization is called reorganized transaction and its
transaction utility is called RTU (reorganized transaction utility).
The RTU of a reorganized transaction Td’ is denoted as RTU(Td’).
When a reorganized transaction Td’ = {i1, i2, …, im} (ij∈I, 1 ≤ j ≤
m) is retrieved, TKUBase applies the strategy DGN (Discarding
Global Node utilities) [19] and calls the function
Insert_Reorganized_Transaction(R, i1) to insert td’.

The function Insert_Reorganized_Transaction(N, ix) takes a node
N in the UP-Tree and an item ix (ix∈ Td’, 1 ≤ x ≤ m) in the
reorganized transaction Td’ as inputs. The function is performed
as follows:

Line 1: If N has a child S such that S.item = ix, then increment
S.count by 1; otherwise, create a new child node S with
S.item = ix, S.count = 1, S.parent = N and S.nu = 0.

Line 2: Increase S.nu by (RTU(Td’) –)∑)',()1+(=
m

xp dp Tiu , where
ip∈Td’ and 1≤ p ≤ m.

Line 3: Call Insert_Reorganized_Transaction(S, ix+1) if p≠ m.

After inserting all reorganized transactions, the construction of the
UP-Tree is completed. Figure 2 shows an UP-Tree for Table 1
when min_util = 0.

3.1.3 Generating PKHUIs from the UP-Tree
The proposed algorithm uses an internal variable named border
minimum utility threshold (denoted as border_min_util) which is
initially set to 0 and raised dynamically after a sufficient number
of itemsets with higher utilities has been captured during the
generation of PKHUIs. The development of the proposed method
is based on the following definitions and lemmas.

Lemma 1. Let P=<X1, X2,…, Xm> be a set of itemsets (m ≥ k),
where Xi is the i-th itemset in P and u(Xi) ≥ u(Xj),∀ i < j. (In other
words, Xi is the itemset with the i-th highest utility in P). For any
itemset Y, if u(Y) < u(Xk), Y is not a top-k high utility itemset.

81

Rationale. According to Definition 10, if there exist k itemsets
whose utilities are higher than the utility of Y, Y is not a top-k
high utility itemset.

Lemma 2. Let P=<X1, X2,…, Xm> be a set of itemsets (m ≥ k),
where Xi is the i-th itemset in P and u(Xi) ≥ u(Xj),∀ i < j. If δP =
u(Xk), fH(D, δ*)⊆ fH(D, δP).
Rationale. Let H be the complete set of top-k high utility itemsets.
If |H| ≥ k, δ* = min{u(X)| X∈H} (by Definition 11). Because δ* =
min{u(X)| X∈H} ≥ min{u(Xi)| Xi ∈ P, 1 ≤ i ≤ k} = u(Xk) = δP,
δ* ≥ δP and fH(D, δ*)⊆ fH(D, δP).

Example 3. Suppose k = 4 and border_min_util = 0 initially. Let
P be the set of 1-items in D. Then P = {{A}:20, {D}:20, {B}:16,
{E}:15, {C}:13, {G}:7, {F}:5}, where the number beside each
item is its exact utility. By Lemma 1, items {C}, {G}, {F} are
unpromising to be the top-4 high utility itemsets. Therefore
border_min_util can be raised to 15, the 4th highest utility value
in P, and no top-k high utility itemset will be missed.
After raising border_min_util, the algorithm performs the UP-
Growth search procedure with min_util = border_min_util to
generate PKHUIs. Although Lemma 1 provides a way to raise
border_min_util, it cannot be applied during the generation of
PKHUIs in phase I. This is because the exact utilities of the
PKHUIs are unknown during phase I. One of the solutions to this
problem is to use lower bound of the utility of PKHUI to raise the
border_min_util. A lower bound of the utility of an itemset can be
estimated by the following definitions.
Definition 12. The minimum item utility of an item a is denoted as
miu(a) and defined as the value u(a, Tr) for which ∃¬ Ts ∈ D
such that u(a, Ts) < u(a, Tr).
Definition 13. The minimum item utility of an itemset X={a1,
a2,…, am} is defined as MIU(X) = ∑)(1= i

m
i amiu × SC(X).

Lemma 3. Let C = <X1, X2,…, Xm> be a set of itemsets (m ≥ k),
where Xi is the i-th itemset in C and MIU(Xi) ≥ MIU(Xj),∀ i < j.
For any itemset Y, if TWU(Y) < δC = min{MIU(Xi) | Xi ∈ C, 1 ≤ i
≤ k}, Y is not a top-k high utility itemset.
Rationale. According to Definition 8, u(Y)≤ TWU(Y). If TWU(Y)
< δC, u(Y) < δC. Besides, u(Y) < MIU(Xi) ≤ u(Xi), Xi ∈ C, 1 ≤ i ≤ k.
According to Definition 10, if there exist k itemsets whose
utilities are higher than the utility of Y, Y is not a top-k high utility
itemset.

Lemma 4. Let C =<X1, X2,…, Xm> be a set of itemsets (m ≥ k),
where Xi is the i-th itemset in C and MIU(Xi) ≥ MIU(Xj),∀ i < j.
If δC = MIU(Xk), fH(D, δ*)⊆ fH(D, δC).
Rationale. Let H be the complete set of top-k high utility itemsets.
If |H| ≥ k, δ* = min{u(X)| X∈H} (by Definition 10). Because δ* =
min{u(X)| X∈H} ≥ min{u(Xi)| Xi ∈ C, 1 ≤ i ≤ k} ≥ min{MIU(Xi)
| Xi ∈ C, 1 ≤ i ≤ k}= MIU(Xk), we have δ* ≥ δC and fH(D, δ*)⊆
fH(D, δC).

Lemma 5. For any itemset X, if TWU(X) < border_min_util ≤ δ*,
X and all its supersets are not top-k high utility itemsets.

Definition 14. The maximum item utility of an item a is denoted
as mau(a) and defined as the value u(a, Tr) for which ∃¬ Ts ∈ D
such that u(a, Ts) > u(a, Tr).

Table 5. Items and their mius and maus
Item A B C D E F G
miu 5 4 1 2 3 5 2
mau 5 8 3 6 6 5 5

Definition 15. The maximum utility of an itemset X={a1, a2,…, am}
is defined as MAU(X) =∑)(1= i

m
i amau × SC(X).

Lemma 6. For any itemset X, if MAU(X) < border_min_util < δ*,
X is not a top-k high utility itemset.
Rationale. According to Definition 15, we have u(X) ≤ MAU(X).
If MAU(X) < border_min_util, u(X) < border_min_util. According
to Definition 10, X is not a top-k high utility itemset.

Lemma 7. For any itemset X, the relationships between MAU(X)
TWU(X), u(X) and MIU(X) is MIU(X) ≤ u(X) ≤ min{MAU(X),
TWU(X)}.

Definition 16. An itemset is called a PKHUI (Potential top-K
High Utility Itemset) if its estimated utility (i.e., TWU) and MAU
are no less than the border_min_util.

Based on the above lemmas and definitions, we have the
following ideas to raise border_min_util during the generation of
PKHUIs. As soon as a candidate X is found by the UP-Growth
search procedure, we check whether its estimated utility (i.e,
TWU(X)) is higher than border_min_util. If TWU(X) <
border_min_util, X and all its supersets are not top-k high utility
itemsets (Lemma 5). Otherwise, we check whether its MAU is
higher than border_min_util. If MAU(X) < border_min_util, X is
not a top-k high utility itemset (Lemma 6). Otherwise, X is
considered as a candidate for phase II and it is outputted with its
estimated utility value according to Lemma 7. If X is a valid
PKHUI and MIU(X) ≥ border_min_util, MIU(X) can be used to
raise the border_min_util (Lemma 3). To efficiently update
border_min_util, we use a min-heap structure L to maintain the k
highest MIUs of the PKHUIs until now. Once k MIUs are found,
border_min_util is raised to the k-th MIU in L according to
Lemma 3. Each time a PKHUI X is found and its MIU is higher
than border_min_util, X is added into L and the lowest MIU in L
is removed. After that, border_min_util is raised to the k-th MIU
in L. The algorithm continues searching for more PKHUIs until
no candidate is found by the UP-Growth search procedure. Figure
3 gives the pseudo code for the above processes.

If(TWU(X) ≥ border_min_util and MAU(X) ≥ border_min_util)
 { Output X and min{TWU(X), MAU(X)}

If (MIU(X) ≥ border_min_util)
 { Add X to L and raise border_min_util by MIU(X)}

}
 else
 { X is not a valid PKHUI }

Figure 3. The pseudo code for the strategy MC

Strategy 1. Raising the threshold by MUI of Candidate (MC)
For any newly mined PKHUI X, if its MIU, TWU and MAU are no
less than the current border_min_util, then it is safe to use MIU(X)
to raise border_min_util.

3.1.4 Identifying top-k HUIs from PKHUIs
In this part, we propose a basic method for identifying top-k high
utility itemsets from the set of PKHUIs. Exact utilities of PKHUIs
are identified and top-k high utility itemsets are examined by
scanning the original database. Main method of this part is similar
to that of phase II in [12, 19]. However, in previous work [12, 19],
all candidates should be checked. Therefore, we only check the
candidate itemset X whose estimated utility is larger than or equal
to the border_min_util finally reached after phase I, i.e.,
min(TWU(X), MAU(X)) ≥ border_min_util.

82

3.2 Effective strategies
In this subsection, we introduce four effective strategies to
effectively raise border_min_util during different stage of the
mining process.

3.2.1 Pre-evaluation Step
Although TKUBase provides a way to mine top-k HUIs,
border_min_util is set to 0 before the construction of the UP-Tree.
This results in the construction of a full UP-Tree in memory,
which degrades the performance of the mining task. If we could
raise border_min_util before the construction of the UP-Tree and
prune unpromising items in the transactions, the number of nodes
maintained in memory could be reduced and the mining algorithm
could achieve better performance. To solve this problem, we
propose a strategy named PE (Pre-Evaluation) to raise
border_min_util during the first scan of the database. A structure
named pre-evaluation matrix (PEM) is used to store lower bounds
for the utility of certain 2-itemsets. Each entry in PEM is denoted
as PEM[x][y] and corresponds to a lower bound of u(xy), where x,
y∈ I. Initially, each value in the matrix is set to 0. When a
transaction Td ={i1, i2, …, im} (ij∈I, 1 ≤ j ≤ m) is retrieved during
the first scan of the database, the utility of the itemset {i1 ij} (1 < j
≤ m) in Td is added to the value of the corresponding entry of
PEM[i1][ij]. For example, when T1 = {(A,1), (C,1), (D,1)} is
retrieved, the corresponding entries PEM[A][C], PEM[A][D] are
accumulated with u({AC}, T1) = 6 and u({AD}, T1) = 7. After
scanning the database, border_min_util is set to the k-th highest
value in PEM. Figure 4 shows the value of each entry in PEM
after scanning Table 1. When k = 4, the 4th highest value in PEM
is 18. Therefore, border_min_util can be raised to 18.
Strategy 2. Pre-Evaluation (PE) PE is applied during the first
scan of the database. When a transaction Td ={i1, i2, …, im} (ij∈ I,
1 < j ≤ m) is retrieved, the utility of u(i1 ij, Td) is added to the
corresponding entry PEM[i1][ij] in the pre-evaluation matrix, 1 < j
≤ m. Then, border_min_util can be raised to the k-th highest
values in PEM. The space complexity is O(|I|/2), where |I| is the
number of distinct items in the database.

Notice that in TKUBase, the strategy DGU in [19] cannot be
applied, because border_min_util is 0 before the construction of
UP-Tree. However, if we raise border_min_util at pre-evaluation
step, the strategy DGU can be applied to prune those items whose
TWUs are less than border_min_util, which further reduces the
size of UP-Tree and the number of candidates produced in phase I.

3.2.2 Raising the threshold by node utilities
The next proposed strategy is called NU (Raising the threshold by
Node Utilities), which is applied during the construction of UP-
Tree. The strategy NU is developed based on the following
lemmas.

Lemma 8. Let PA = {N1, N2,…, Nm, R} be a path from a node N1
to the root R in the UP-Tree and ij be an item in Nj, 1≤ j ≤ m. The
node utility of N1 is a lower bound for the utility of the itemset {i1,
i2…, im}, 1≤ j ≤ m.
Rationale. The UP-Tree is constructed by applying the strategy
DGN [19]. According to the rationale described in [19], the utility
of the itemset {i1, i2…, im} is guaranteed to be higher than the
node utility of N1.Therefore, N1.nu ≤ u({i1, i2…, im}).

Lemma 9. Let S = <N1, N2,…, Nm> be an ordered set of nodes in
UP-Tree (m ≥ k), where Ni is the i-th node in S and Ni.nu ≥
Nj.nu,∀ i < j. If δNU = Nk.nu, then fH(D, δ*)⊆ fH(D, δNU).

 B C D E F G
A 9 28 24 24 10 15
B 17 14 18 0 6
C 0 0 0 0
D 0 0 0
E 0 0
F 0

Figure 4. Pre-evaluation matrix
Rationale. Each node Nj to the root R represents an unique
itemset Xj, 1 ≤ j ≤ m (Lemma 8). Let S’ =<X1, X2,…, Xm> be an
ordered set of itemsets, where Nj.nu ≤ u(Xj) and 1 ≤ j ≤ m. If
|H| ≥ k, then δ* = min{u(X)| X∈ H} (Definition 10). Because
min{u(X)| X∈H} ≥ min{u(Xj)| Xj ∈ S, 1 ≤ j ≤ k} ≥min{Nj.nu | Nj

∈ S’, 1 ≤ j ≤ k}, we have δ* ≥ δNU and fH(D, δ*)⊆ fH(D, δNU).

By Lemma 8 and 9, if there are more than k nodes in the UP-Tree
during its construction and this value is higher than the current
border_min_util, we can raise border_min_util to the k-th highest
node utility in the UP-Tree. For example, suppose k = 4, when the
first reorganized transaction T1’ = {(C,1), (A,1), (D,1)} is inserted
into the UP-Tee, the nodes {C}, {A} and {D} are created with
node utilities 1, 6 and 8, which represent lower bounds for the
utilities of itemsets {C}, {AC} and {DAC}. When the second
reorganized transaction is inserted into the tree, there are more
than four nodes in the UP-Tree. Therefore, we can apply Lemma
9 to raise border_min_util to the 4-th highest node utility in the
UP-Tree.

Strategy 3. Raising the threshold by Node Utilities (NU) NU is
applied during the construction of the UP-Tree (the second scan
of the database). If there are more than k nodes in the current UP-
Tree and k-th highest node utility is no less than the current
border_min_util, border_min_util can be raised to the k-th highest
node utility in the current UP-Tree.

3.2.3 Raising the threshold by MIU of
Descendents
The third strategy that we propose is called MD (Raising the
threshold by MIU of Descendents). It is applied after the
construction of the UP-Tree and before the generation of PKHUIs.
For each node Nα under the root in the UP-Tree, we traverse the
sub-tree under Nα once to calculate the MIU of NαNβ for each
descendent node Nβ of Nα. If there are more than k such values,
border_min_util can be raised to the k-th highest value. For
example, consider the UP-Tree in Figure 2 and suppose k = 4. The
node under the root is {C}. We traverse the sub-tree under the
node {C} once and calculate the MIUs of its descendents. For the
descendent {A}, the total support count of {A} in the sub-tree of
{C} is (1 + 2) = 3. Therefore, the MIU of {AC} is (miu({A}) +
miu({C})) ×SC({AC}) = (5 + 4) × 3 = 27.

Strategy 4. Raising the threshold by MIU of Descendents (MD)
MD is applied after the construction of UP-Tree and before the
generation of PKHUIs. For each node Nα under the root in the
UP-Tree, the support count of NαNβ is calculated by traversing
every its descendent node Nβ. For each pair NαNβ, we calculate the
MIU of NαNβ. If there are more than k MIUs larger than
border_min_util, the border_min_util can be raised to k-th highest
value.

Table 6. MIUs of descendents
Descendent E A B D G F

MIU 16 18 15 9 3 1

83

3.2.4 Raising the threshold during Phase II
In this part, top-k high utility itemsets are identified by checking
the real utilities of PKHUIs in the database. The purpose of this
part is the same as the basic method (in Section 3.1.4). Although
the basic method can skip checking some candidates, the number
of checked PKHUIs is still too large. Scanning database for
checking the large amount of PKHUIs is very time-consuming.

In view of this, we propose an additional strategy for cooperating
with the candidate skipping mechanism in Section 3.1.4. There
are two main steps in this strategy. First, the candidates are sorted
by the descendent order of estimated utilities, i.e., min(TWU(X),
MAU(X)). Thus, the candidates with larger estimated utility
values will be first checked; in other words, those having lower
values will be checked later.

After k PKHUIs whose exact utilities are larger than
border_min_util are found, a mechanism for raising
border_min_util is applied. If the exact utility of a new HUI Y is
larger than border_min_util, Y and u(Y) is inserted into a top-k
HUI list E (All HUIs in E are ordered by their exact utilities), and
the HUI with the lowest utility value is removed from E. Then
border_min_util is raised to the utility of k-th HUI in E. If the
estimated utility of the current candidate Z, i.e., min(TWU(Z),
MAU(Z)), is less than the new border minimum utility threshold,
all of the remaining candidates do not need to be checked. This is
because that their upper bounds of exact utilities are not larger
than border_min_util. Finally, E is the set of top-k high utility
itemsets of the database. By this mechanism, the candidates with
lower estimated utility values may not be checked since the
border_min_util is raised. The I/O cost and execution time for
phase II can be further reduced. This technique works well
especially when k is small.

Strategy 5. Sorting candidates & raising threshold by the
exact utility of candidates. (SE) SE is applied during phase II of
TKU. Let CI be the set of candidates produced in phase I.
Candidates in CI are sorted in the descendent order of their
estimated utilities. Next, if there are more than k HUIs whose
exact utilities are larger than border_min_util, border_min_util
can be raised to the k-th highest exact utility. For any candidate Z,
if min(TWU(Z), MAU(Z)) is less than border_min_util, Z and the
remaining candidates do not need to be checked anymore.

4. EXPERIMENTAL EVALUATION
In this section, we evaluate the performance of the proposed
algorithm. Experiments were performed on computer with a 3.40
GHz Intel Core Processor with 4 gigabyte memory, and running
on Windows 7. All of the algorithms are implemented in Java.
Different types of real world datasets were used in the
experiments. Foodmart, a sparse dataset, was acquired from
Microsoft foodmart 2000 database [27]; Mushroom, a dense
dataset, was obtained from the FIMI Repository [26]; Chainstore,
a large dataset, was obtained from NU-MineBench 2.0 [15]. The
two datasets Foodmart and Chainstore already contain unit profits
and purchased quantities. For Mushroom dataset, unit profits for
items are generated between 1 and 1000 by using a log-normal
distribution and quantities of items are generated randomly
between 1 and 5, as the settings of [19]. Table 7 shows the
characteristics of the datasets used in the experiments. To
evaluate the performance of the proposed strategies, we prepared
three versions of TKU and gave them the names TKU, TKUnoSE
and TKUBase as shown in Table 8. These three versions are

compared with the state-of-the-art utility mining algorithm UP-
Growth [19].

Table 7. Datasets’ characteristics
Dataset #Transactions Avg. length #Items Type

Foodmart 4,141 4.4 1,559 Sparse
Mushroom 8,124 23.0 119 Dense

Chainstore 1,112,949 7.2 46,086 Sparse
Large

Table 8. Strategies used by the algorithms

Algorithm Phase I Phase II
PE NU MD MC SE

TKU Y Y Y Y Y
TKUnoSE Y Y Y Y
TKUBase Y Y

Because UP-Growth is not developed for mining top-k HUIs, it
cannot be compared directly with TKU. To compare their
performance, we considered the scenario where the users choose
the optimal parameters for UP-Growth to produce the same
amount of patterns as TKU (denoted as UPOptimal in the following
experiments).

We first show the performance of the algorithms on the Foodmart
dataset. The results are shown in Figure 5 and Table 9. In Figure 5
(a), it can be observed that the runtime for phase I of TKU
approaches that of UPOptimal. On the contrary, the performance of
TKUBase is the worst among all the algorithms. Its runtime is
about 100 times slower than that of TKU. The reason is shown in
Figure 5 (b). This figure shows the thresholds that the TKU and
TKUBase reached after phase I. Since UP-Growth does not raise
the thresholds during the mining process, we show its initial
thresholds (the optimal thresholds). In this figure, it can be
observed that the thresholds reached by TKU are closer to the
optimal thresholds than those of TKUBase. On the other hand,
TKUBase does not apply the strategies PE, NU and MD. Therefore,
it constructs a full UP-Tree with min_util = 0. Since raising the
threshold for TKUBase strictly depends on the MC strategy, it
cannot be raised effectively. Thus its search space is the largest
and its runtime is the longest.

The ineffectiveness of raising the threshold for TKUBase also
influences the number of candidates generated in phase I. The
number of candidates generates by each algorithm is shown in
Table 9. In this table, it can be observed that the number of
candidates for TKUBase is over 1000 times larger than TKU when
k is less than 1000. The reason is that the strategies PE, NU and
MD effectively raise the threshold at different stages of the
mining process. Thus the number of patterns generated by TKU is
much smaller than that of TKUBase.

The runtime of each algorithm for phase II is shown in Figure 5
(c). Because each candidate needs to be checked in phase II and
TKUBase has the largest number of candidates, its performance for
phase II is the worst. The performance of TKUnoSE is worse than
TKU because the latter uses the strategy SE, which reduces the
number of candidates need to be checked in phase II. Overall
runtime of the algorithms is shown in Figure 5 (d). We can see
that the runtime of TKU is over 100 times faster than TKUBase,
and only about twice less than that of UPOptimal. Therefore, it can
be concluded that TKU is an efficient algorithm since it can
exactly find the top-k HUIs within a reasonable time.

84

Phase I Time

0.1

1

10

100

1000

10000

1 10 100 1000
K

Ti
m

e
(S

ec
.)

TKU TKU(Base) UP(Optimal)

Reached Threshold

0

5000

10000

15000

20000

25000

30000

1 10 100 1000
K

Th
re

sh
ol

d

UP(Optimal)
TKU
TKU(Base)

 (a) Phase I time (b) Reached threshold after phase I

Phase II Time

0

10

20

30

40

50

60

70

1 10 100 1000

K

Ti
m

e
(S

ec
.)

TKU
TKU(no SE)
TKU(Base)
UP(Optimal)

Total Time

1

10

100

1000

10000

100000

1 10 100 1000
K

Ti
m

e
(S

ec
.)

TKU
TKU(Base)
UP(Optimal)

 (c) Phase II time (d) Total time

Figure 5. Performance of the algorithms on Foodmart

Table 9. Number of candidates after Phase I
K TKU TKUBase Reduction ratio

1 1,379 2,466,459 1788.59
10 1,503 2,494,446 1659.65

100 2,456 2,537,225 1033.07
1,000 39,289 2,585,300 65.80

Phase I Time

0

30

60

90

120

150

1 10 100 1000 5000
K

Ti
m

e
(S

ec
.)

TKU
TKU(Base)
UP(Optimal)

Reached Threshold

0

4000000

8000000

12000000

16000000

1 10 100 1000 5000

K

Th
re

sh
ol

d

UP(Optimal)
TKU
TKU(Base)

 (a) Phase I time (b) Reached threshold after phase I

Phase II Time

1

10

100

1000

10000

1 10 100 1000 5000
K

Ti
m

e
(S

ec
.)

TKU
TKU(no SE)
TKU(Base)
UP(Optimal)

Total Time

0

300

600

900

1200

1500

1 10 100 1000 5000

K

Ti
m

e
(S

ec
.)

TKU
TKU(Base)
UP(Optimal)

 (c) Phase II time (d) Total time

Figure 6. Performance of the algorithms on Mushroom

Table 10. Number of candidates after Phase I
K TKU TKUBase Reduction ratio
1 427 508,462 1190.78

10 597,301 713,793 1.20
100 803,377 920,040 1.14

1,000 1,540,583 1,657,403 1.08
5,000 2,594,337 2,711,248 1.05

Next, we show the performance on the Mushroom dataset. The
results are shown in Figure 6 and Table 10. Figure 6 (a) shows the
runtime for phase I of the algorithms. It can be observed that the
runtime for phase I of TKU is close to that of TKUBase. This is
because Mushroom is a dense dataset. The estimated utility values,
i.e., TWU values, of itemsets are much larger than their exact
utilities. Thus the thresholds cannot be raised effectively in phase
I. The thresholds reached by the algorithms are shown in Figure 6
(b). It can be seen that if k is larger than 1, the threshold reached
by TKU is close to TKUBase.

Table 10 shows the number of candidates generated by the
algorithms during phase I. In this table, it can be seen that when k
is larger than 1, the reduction ratio is slightly larger than 1. The
reduction ratio decreases when k increases. Figure 6 (c) shows the
runtime for phase II of the algorithms. The runtime for phase II of
TKUnoSE is the worst among the algorithms. This is because,
without the SE strategy, TKUnoSE needs to check all the
candidates to determine which itemsets are top-k HUIs. When k is
set to 5,000, the runtime of TKUnoSE is too long to be executed
(over 10,000 seconds). Finally, Figure 6 (d) shows the total
runtime of the algorithms. We can conclude that although TKU is
not as efficient as for the Foodmart dataset, it is still more
efficient than TKUBase.
Finally, we show the performance of the algorithms on Chainstore,
a large dataset with over 1 million transactions. Because the
runtime of TKUBase for this dataset is too long to be executed
(over 20 hours when k = 1), we instead use UP-Growth with a low
minimum utility threshold (0.01%) as the baseline (denoted as
UPLow in the following experiments). The number of HUIs
generated with min_util = 0.01% is about 3800. The results are
shown in Figure 7 and Table 11. Figure 7 (a) shows the runtime
for phase I of the algorithms. Since the threshold of UPLow is fixed,
its runtime remains the same. It can be seen that the runtime of
TKU is worse than UPLow when k is larger than 200. The reasons
are that TKU needs to perform more computation for the
strategies and it raises the threshold by the strategies step by step.

Figure 7 (b) shows the runtime for phase II of the algorithms.
Although the runtime for phase I of TKU is slightly worse than
UPLow, the runtime for phase II of TKU is much faster than that of
UPLow. The total runtimes (the sum of the runtimes of phase I and
phase II) are shown in Figure 7 (c). TKU is much faster than
UPLow. Generally, overall runtime of TKU is close to UPOptimal.
This is because UPLow needs to check all candidates in phase II;
on the other hand, TKU only needs to check some of them
because it uses the SE strategy.
Figure 7 (d) shows the number of candidates checked in phase II
by each algorithm. It can be observed that although TKU
generates much more candidates in phase I, the number of
candidates that need to be checked by TKU is close to UPoptimal in
phase II. This is because using the SE strategy, TKU avoids
checking some candidates that do not need to be checked. In
contrary, since all candidates are checked by TKUnoSE, its
performance is worse than TKU and UPOptimal.

Finally, we show the threshold changes after applying the
strategies in phase I. The results are shown in Table 11. In this
table, it can be observed that the thresholds are raised higher
when the strategies are applied. On the other hand, it can also be
seen that the thresholds decrease when k increases. This is
reasonable because the larger k is, the lower the thresholds are.

85

Overall, Table 11 shows the effectiveness of all proposed
strategies in phase I.

Phase I Time

0

20

40

60

80

100

100 300 500 700 900
K

Ti
m

e
(S

ec
.)

TKU
UP(Optimal)
UP(Low)

Phase II Time

0

1500

3000

4500

6000

100 300 500 700 900
K

Ti
m

e
(S

ec
.)

TKU TKU(no SE)
UP(Optimal) UP(Low)

 (a) Phase I time (b) Phase II time

Total Time

0

1000

2000

3000

4000

5000

6000

100 300 500 700 900
K

Ti
m

e
(S

ec
.) TKU

UP(Optimal)
UP(Low)

Number of Candidates

0

20000

40000

60000

80000

100 300 500 700 900
K

#C
an

di
da

te

TKU(no SE)
TKU
UP(Optimal)

 (c) Total time (d)Number of candidates checked in Phase II

Figure 7. Performance of the algorithms on Chainstore

Table 11. Reached thresholds after each step in Phase I
K PE NU MD MC

100 2254.35 7509.38 7509.38 7509.38
200 1578.67 3929.84 3929.84 5324.16
300 1307.68 2728.92 2804.48 4346.16
400 1116.25 2158.83 2382.52 3803.76
500 988.49 1739.42 2050.96 3438.30
600 899.52 1457.85 1820.28 3145.21
700 826.38 1270.27 1650.04 2899.80
800 758.63 1117.47 1515.24 2734.67
900 712.97 1015.57 1412.70 2588.88

1,000 677.37 915.22 1334.82 2469.60

In general, the experimental results show that TKU outperforms
TKUBase and UPLow. Moreover, the performance of TKU is close to
UPOptimal. The reasons are listed as follows. First, strategies PE, NU,
MD and MC in phase I effectively raise the threshold step by step in
phase I. Thus the number of candidates that need to be checked in
phase II is less and the search space in phase I is successfully
reduced. Second, the SE strategy in phase II effectively reduces the
number of candidates that need to be checked in phase II. Therefore,
TKU is shown to be efficient with a performance that is close to that
of the optimal case of the state-of-the-art utility mining algorithm
UP-Growth.

5. CONCLUSION
In this paper, we have proposed an efficient algorithm named TKU
for mining top-k high utility itemsets from transaction databases.
TKU guarantees there is no pattern missing during the mining
process. We develop four strategies for phase I to raise the border
minimum utility threshold and reduce the search space and number
of generated candidates. Moreover, a strategy is designed for phase
II to decrease the number of checked candidates. The mining
performance is enhanced significantly since both the search space
and the number of candidates are effectively reduced by the
proposed strategies. In the experiments, different types of real
datasets are used to evaluate the performance of our algorithm. The
experimental results show that TKU outperforms the baseline

algorithms substantially and the performance of TKU is close to the
optimal case of the state-of-the-art utility mining algorithm.

ACKNOWLEDGMENTS
This research was supported in part by National Science Council, Taiwan,
R.O.C. under grant no. NSC100-2631-H-006-002, US NSF through grants
DBI-0960443 and OISE-1129076, and Google Mobile 2014 Program.

REFERENCES
[1] R. Agrawal and R. Srikant. Fast algorithms for mining association rules. In Proc.

of the 20th Int'l Conf. on Very Large Data Bases, pp. 487-499, 1994.
[2] C. F. Ahmed, S. K. Tanbeer, B.-S. Jeong and Y.-K. Lee. Efficient Tree Structures

for High-utility Pattern Mining in Incremental Databases. In IEEE Transactions
on Knowledge and Data Engineering, Vol. 21, Issue 12, pp. 1708-1721, 2009.

[3] R. Chan, Q. Yang and Y. Shen. Mining high-utility itemsets. In Proc. of Third
IEEE Int'l Conf. on Data Mining, pp. 19-26, Nov., 2003.

[4] Y. L. Cheung, A. W. Fu, Mining frequent itemsets without support threshold:
with and without item constraints. IEEE Transactions on Knowledge and Data
Engineering, Vol. 16, No. 6, pp. 1052-1069, 2004.

[5] K. Chuang, J. Huang, M. Chen, Mining Top-K Frequent Patterns in the Presence
of the Memory Constraint, The VLDB Journal, Vol. 17, pp. 1321-1344, 2008.

[6] A. Erwin, R. P. Gopalan and N. R. Achuthan. Efficient Mining of High-utility
Itemsets from Large Datasets. In PAKDD 2008, LNAI 5012, pp. 554-561, 2008.

[7] A. W. Fu, R. W. Kwong and J. Tang, Mining N-Most Interesting Itemsets, In
Proc. of ISMIS’00, 2000.

[8] J. Han, J. Pei and Y. Yin. Mining frequent patterns without candidate generation.
In Proc. of the ACM-SIGMOD Int'l Conf. on Management of Data, pp. 1-12,
2000.

[9] J. Han, J. Wang, Y. Lu and P. Tzvetkov, “Mining Top-k Frequent Closed Patterns
without Minimum Support,” In Proc. of ICDM, 2002.

[10] Y. Hirate, E. Iwahashi and H. Yamana, TF2P-Growth: An Efficient Algorithm for
Mining Frequent patterns without any Thresholds, In Proc. of ICDM 2004.

[11] H.-F. Li, H.-Y. Huang, Y.-C. Chen, Y.-J. Liu, S.-Y. Lee. Fast and Memory
Efficient Mining of High Utility Itemsets in Data Streams. In Proc. of the 8th
IEEE Int'l Conf. on Data Mining, pp. 881-886, 2008.

[12] Y. Liu, W. Liao, and A. Choudhary. A fast high-utility itemsets mining algorithm.
In Proc. of the Utility-Based Data Mining Workshop, 2005.

[13] Y.-C. Li, J.-S. Yeh and C.-C. Chang. Isolated Items Discarding Strategy for
Discovering High-utility Itemsets. In Data & Knowledge Engineering, Vol.
64, Issue 1, pp. 198-217, 2008.

[14] S. Ngan, T. Lam, R. C. Wong and A. W. Fu, Mining N-most Interesting Itemsets
without Support Threshold by the COFI-Tree, Int. J. Business Intelligence & Data
Mining, Vol. 1, No. 1, pp. 88-106, 2005.

[15] J. Pisharath, Y. Liu, B. Ozisikyilmaz, R. Narayanan, W. K. Liao, A. Choudhary
and G. Memik, NU-MineBench version 2.0 dataset and technical report,
http://cucis.ece.northwestern.edu/projects/DMS/MineBench.html

[16] T. M. Quang, S. Oyanagi, and K. Yamazaki, ExMiner: An Efficient Algorithm for
Mining Top-K Frequent Patterns, ADMA 2006, LNAI 4093, pp. 436 – 447, 2006.

[17] L. Shen, H. Shen, P. Pritchard and R. Topor, Finding the N Largest Itemsets, in
Proc. Int’l Conf. on Data Mining, pp. 211-222, 1998.

[18] B.-E. Shie, V. S. Tseng, and P. S. Yu. Online Mining of Temporal Maximal
Utility Itemsets from Data Streams. In Proc. of the 25th Annual ACM Symposium
on Applied Computing (ACM SAC 2010), 2010.

[19] V. S. Tseng, C.-W. Wu, B.-E. Shie, and P. S. Yu. UP-Growth: an efficient
algorithm for high utility itemset mining. In Proc. of Int'l Conf. on ACM SIGKDD,
pp. 253–262, 2010.

[20] V. S. Tseng, C. J. Chu, and T. Liang. Efficient mining of temporal high-utility
itemsets from data streams. In ACM KDD Workshop on Utility-Based Data
Mining Workshop, 2006.

[21] B. Vo, H. Nguyen, T. B. Ho, and B. Le. Parallel Method for Mining High-utility
Itemsets from Vertically Partitioned Distributed Databases. In KES 2009, Part I,
LNAI 5711, pp. 251-260, 2009.

[22] J. Wang and J. Han, TFP: An Efficient Algorithm for Mining Top-K Frequent
Closed Itemsets, IEEE Transactions on Knowledge and Data Engineering, Vol.
17, No. 5, pp. 652-664, May 2005.

[23] H. Yao, H. J. Hamilton, L. Geng, A unified framework for utility-based measures
for mining itemsets. In Proc. of ACM SIGKDD 2nd Workshop on Utility-Based
Data Mining, pp. 28-37, 2006.

[24] J.-S. Yeh, C.-Y. Chang and Y.-T. Wang. Efficient Algorithms for Incremental
Utility Mining. In Proc. of the 2nd Int'l Conf. on Ubiquitous information
management and communication, pp. 212-217, 2008.

[25] S.-J. Yen and Y.-S. Lee. Mining High-utility Quantitative Association Rules. In
Proc. of 9th Int'l Conf. on Data Warehousing and Knowledge Discovery
(DaWaK'2007), Lecture Notes in Computer Science (LNCS) 4654, pp. 283-292,
2007.

[26] Frequent itemset mining implementations repository, http://fimi.cs.helsinki.fi/
[27] FoodMart2000, Microsoft Developer Network (MSDN),

http://msdn.microsoft.com/en-us/library/aa217032(v=sql.80).asp

86

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Academy
 /AgencyFB-Bold
 /AgencyFB-Reg
 /Alba
 /AlbaMatter
 /AlbaSuper
 /Algerian
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialRoundedMTBold
 /ArialUnicodeMS
 /BabyKruffy
 /BaskOldFace
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BlackadderITC-Regular
 /BodoniMT
 /BodoniMTBlack
 /BodoniMTBlack-Italic
 /BodoniMT-Bold
 /BodoniMT-BoldItalic
 /BodoniMTCondensed
 /BodoniMTCondensed-Bold
 /BodoniMTCondensed-BoldItalic
 /BodoniMTCondensed-Italic
 /BodoniMT-Italic
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BradleyHandITC
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /CalisMTBol
 /CalistoMT
 /CalistoMT-BoldItalic
 /CalistoMT-Italic
 /Cambria
 /Cambria-Bold
 /Cambria-BoldItalic
 /Cambria-Italic
 /CambriaMath
 /Castellar
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chick
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CopperplateGothic-Bold
 /CopperplateGothic-Light
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /Croobie
 /CurlzMT
 /EdwardianScriptITC
 /Elephant-Italic
 /Elephant-Regular
 /EngraversMT
 /ErasITC-Bold
 /ErasITC-Demi
 /ErasITC-Light
 /ErasITC-Medium
 /EstrangeloEdessa
 /Fat
 /FelixTitlingMT
 /FootlightMTLight
 /ForteMT
 /FranklinGothic-Book
 /FranklinGothic-BookItalic
 /FranklinGothic-Demi
 /FranklinGothic-DemiCond
 /FranklinGothic-DemiItalic
 /FranklinGothic-Heavy
 /FranklinGothic-HeavyItalic
 /FranklinGothic-Medium
 /FranklinGothic-MediumCond
 /FranklinGothic-MediumItalic
 /FreestyleScript-Regular
 /FrenchScriptMT
 /Freshbot
 /Frosty
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Gigi-Regular
 /GillSansMT
 /GillSansMT-Bold
 /GillSansMT-BoldItalic
 /GillSansMT-Condensed
 /GillSansMT-ExtraCondensedBold
 /GillSansMT-Italic
 /GillSans-UltraBold
 /GillSans-UltraBoldCondensed
 /GlooGun
 /GloucesterMT-ExtraCondensed
 /GoudyOldStyleT-Bold
 /GoudyOldStyleT-Italic
 /GoudyOldStyleT-Regular
 /GoudyStout
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /ImprintMT-Shadow
 /InformalRoman-Regular
 /Jenkinsv20
 /Jenkinsv20Thik
 /Jokerman-Regular
 /Jokewood
 /JuiceITC-Regular
 /Karat
 /Kartika
 /KristenITC-Regular
 /KunstlerScript
 /Latha
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSans-Typewriter
 /LucidaSans-TypewriterBold
 /LucidaSans-TypewriterBoldOblique
 /LucidaSans-TypewriterOblique
 /LucidaSansUnicode
 /Magneto-Bold
 /MaiandraGD-Regular
 /Mangal-Regular
 /MaturaMTScriptCapitals
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MSOutlook
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /OCRAExtended
 /OldEnglishTextMT
 /Onyx
 /PalaceScriptMT
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Papyrus-Regular
 /Parchment-Regular
 /Perpetua
 /Perpetua-Bold
 /Perpetua-BoldItalic
 /Perpetua-Italic
 /PerpetuaTitlingMT-Bold
 /PerpetuaTitlingMT-Light
 /Playbill
 /Poornut
 /PoorRichard-Regular
 /Porkys
 /PorkysHeavy
 /Pristina-Regular
 /PussycatSassy
 /PussycatSnickers
 /Raavi
 /RageItalic
 /Ravie
 /Rockwell
 /Rockwell-Bold
 /Rockwell-BoldItalic
 /Rockwell-Condensed
 /Rockwell-CondensedBold
 /Rockwell-ExtraBold
 /Rockwell-Italic
 /ScriptMTBold
 /ShowcardGothic-Reg
 /Shruti
 /SnapITC-Regular
 /Square721BT-Roman
 /Stencil
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /TwCenMT-Bold
 /TwCenMT-BoldItalic
 /TwCenMT-Condensed
 /TwCenMT-CondensedBold
 /TwCenMT-CondensedExtraBold
 /TwCenMT-Italic
 /TwCenMT-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Vrinda
 /Webdings
 /WeltronUrban
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /PDFX1a:2003
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

